Volume 43 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
LIU Jingjing, SUN Yuhuai. New Exact Solutions to a Class of Fractional-Order Modified Unstable Schrödinger Equations[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1185-1194. doi: 10.21656/1000-0887.420228
Citation: LIU Jingjing, SUN Yuhuai. New Exact Solutions to a Class of Fractional-Order Modified Unstable Schrödinger Equations[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1185-1194. doi: 10.21656/1000-0887.420228

New Exact Solutions to a Class of Fractional-Order Modified Unstable Schrödinger Equations

doi: 10.21656/1000-0887.420228
  • Received Date: 2021-08-03
  • Rev Recd Date: 2021-09-06
  • Available Online: 2022-10-09
  • Publish Date: 2022-10-31
  • The fractional-order modified unstable Schrödinger equation (FMUSE) was studied, which describes the dispersion, nonlinearity, gain or absorption variation of optical pulses propagating in nonuniform fiber systems. First, the generalized fractional wave transform was appropriately used to convert the FMUSE into an ordinary differential equation, and the real and imaginary parts were separated and set as zero respectively, and the dispersion relation was obtained. By means of the modified (G'/G)-expansion method, a series of new exact analytical solutions with parameters were obtained, including trigonometric solutions, hyperbolic solutions and rational solutions, and the constraints ensuring the existence of solutions were given. Finally, the solutions of the dark solitary wave and the periodic wave were obtained with the parameters of special values.

  • loading
  • [1]
    ZULFIQAR A, AHMAD J. Soliton solutions of fractional modified unstable Schrödinger equation using exp-function method[J]. Results in Physics, 2020, 19: 103476. doi: 10.1016/j.rinp.2020.103476
    [2]
    MIRZAZADEH M, YILDIRIM Y, YASAR E, et al. Optical solitons and conservation law of Kundu-Eckhaus equation[J]. Optik, 2018, 154: 551-557. doi: 10.1016/j.ijleo.2017.10.084
    [3]
    ZHOU Q, MIRZAZADEH M, ZERRAD E, et al. Bright, dark, and singular solitons in optical fibers with spatio-temporal dispersion and spatially dependent coefficients[J]. Journal of Modern Optics, 2016, 63(10): 950-954. doi: 10.1080/09500340.2015.1111456
    [4]
    KARA A H, RAZBOROVA P, BISWAS A. Solitons and conservation laws of coupled Ostrovsky equation for internal waves[J]. Applied Mathematics and Computation, 2015, 258: 95-99. doi: 10.1016/j.amc.2015.01.093
    [5]
    SEADAWY A R, IQBAL M, LU D. Construction of soliton solutions of the modify unstable nonlinear Schrödinger dynamical equation in fiber optics[J]. Indian Journal of Physics, 2020, 94: 823-832. doi: 10.1007/s12648-019-01532-5
    [6]
    HONG B, LU D, CHEN W. Exact and approximate solutions for the fractional Schrödinger equation with variable coefficients[J]. Advances in Differences Equations, 2019, 2019(1): 370. doi: 10.1186/s13662-019-2313-z
    [7]
    DODD R K, EILBECK J C, GIBBON J D, et al. Solitons and Nonlinear Wave Equations[M]. Academic Press Inc, 1982.
    [8]
    SAVESCU M, BHRAWY A H, ALSHAERY A A, et al. Optical solitons in nonlinear directional couplers with spatio-temporal dispersion[J]. Journal of Modern Optics, 2014, 61(5): 441-458. doi: 10.1080/09500340.2014.894149
    [9]
    ARSHAD M, SEADAWY A R, LU D. Bright-dark solitary wave solutions of generalized higher-order nonlinear Schrödinger equation and its applications in optics[J]. Journal of Electromagn Waves and Applications, 2017, 31(16): 1711-1121. doi: 10.1080/09205071.2017.1362361
    [10]
    YANG Z J, ZHANG S M, LI X L, et al. Variable sinh-Gaussian solitons in nonlocal nonlinear Schrödinger equation[J]. Applied Mathematics Letters, 2018, 82: 64-70. doi: 10.1016/j.aml.2018.02.018
    [11]
    JIA R R, GUO R. Breather and rogue wave solutions for the (2+1)-dimensional nonlinear Schrödinger-Maxwell-Bloch equation[J]. Applied Mathematics Letters, 2019, 93: 117-123. doi: 10.1016/j.aml.2019.02.001
    [12]
    江林, 孙峪怀, 张雪, 等.

    2+1)维时空分数阶Nizhnik-Novikov-Veslov方程的精确行波解及其分支[J]. 应用数学和力学, 2018, 39(11): 1313-1322. (JIANG Lin, SUN Yuhuai, ZHANG Xue, et al. Exact traveling wave solutions and bifurcations of (2+1)-dimensional space-time fractional-order Nizhnik-Novikov-Veslov equations[J]. Applied Mathematics and Mechanics, 2018, 39(11): 1313-1322. (in Chinese)
    [13]
    石兰芳, 聂子文. 应用全新(G'/G)-展开方法求解广义非线性Schrödinger方程和耦合非线性Schrödinger方程组[J]. 应用数学和力学, 2017, 38(5): 539-552

    SHI Lanfang, NIE Ziwen. Solutions to the nonlinear Schrödinger equation and coupled nonlinear Schrödinger equations with a new (G'/G)-expansion method[J]. Applied Mathematics and Mechanics, 2017, 38(5): 539-552.(in Chinese)
    [14]
    ZAYED E, GEPREEL K A. The Modified (G′/G)-Expansion Method and Its Applications to Construct Exact Solutions for Nonlinear PDEs[M]. World Scientific and Engineering Academy and Society (WSEAS), 2011.
    [15]
    KUMAR V. Modified (G'/G)-expansion method for finding traveling wave solutions of the coupled Benjamin-Bona-Mahony-KdV equation[J]. Journal of Ocean Engineering and Science, 2019, 4(3): 252-255. doi: 10.1016/j.joes.2019.04.008
    [16]
    JUMARIE G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results[J]. Computers and Mathematics With Applications, 2006, 51(9/10): 1367-1376.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (524) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return