Citation: | MAO Xiaomin, ZHANG Huihua, JI Xiaolei, HAN Shangyu. Intelligent Crack Recognition Based on XFEM and GA-BP Neural Networks[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1268-1280. doi: 10.21656/1000-0887.420250 |
Based on the extended finite element method (XFEM) and the error back propagation (BP) multilayer feedforward neural network algorithm optimized by the genetic algorithm (GA), an inverse analysis model for identifying cracks in structures was established. The GA-BP neural network was trained by the displacement data of measuring points obtained by the XFEM forward analysis, and the network was used for crack inverse identification. The feasibility and accuracy of the model were verified with 2 typical examples, and the effects of the mesh density, the measuring point layout and the input data noise on the accuracy of network recognition were discussed. The results show that, the proposed method can invert the geometric information of straight cracks, which is the major focus of linear elastic fracture mechanics, and has good noise tolerance. Besides, the GA-BP neural network has higher accuracy than the traditional BP neural network in general.
[1] |
KWAN A K H, MA F J. Crack width analysis of reinforced concrete under direct tension by finite element method and crack queuing algorithm[J]. Engineering Structures, 2016, 126(1): 618-627.
|
[2] |
XIE G Z, ZHOU F L, LI H, et al. A family of non-conforming crack front elements of quadrilateral and triangular types for 3D crack problems using the boundary element method[J]. Frontiers of Mechanical Engineering, 2019, 14(3): 332-341. doi: 10.1007/s11465-019-0540-3
|
[3] |
李录贤, 王铁军. 扩展有限元法(XFEM)及其应用[J]. 力学进展, 2005, 35(1): 5-20 doi: 10.3321/j.issn:1000-0992.2005.01.002
LI Luxian, WANG Tiejun. The extended finite element method and its application: a review[J]. Advances in Mechanics, 2005, 35(1): 5-20.(in Chinese) doi: 10.3321/j.issn:1000-0992.2005.01.002
|
[4] |
王振, 余天堂. 模拟三维裂纹问题的自适应多尺度扩展有限元法[J]. 工程力学, 2016, 33(1): 32-38 doi: 10.6052/j.issn.1000-4750.2014.06.0483
WANG Zhen, YU Tiantang. Adaptive multiscale extended finite element method for simulating three-dimensional crack problems[J]. Engineering Mechanics, 2016, 33(1): 32-38.(in Chinese) doi: 10.6052/j.issn.1000-4750.2014.06.0483
|
[5] |
XIAO G Z, WEN L F, TIAN R. Arbitrary 3D crack propagation with improved XFEM: accurate and efficient crack geometries[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 377: 113659. doi: 10.1016/j.cma.2020.113659
|
[6] |
LI Y M, XIA Y D, XIE D L, et al. Application of artificial bee colony algorithm for particle size distribution measurement of suspended sediment based on focused ultrasonic sensor[J]. Transactions of the Institute of Measurement and Control, 2021, 43(7): 1680-1690. doi: 10.1177/0142331221989115
|
[7] |
ALHADDAD W, HALABI Y, MEREE H, et al. Optimum design method for simplified model of outrigger and ladder systems in tall buildings using genetic algorithm[J]. Structures, 2020, 28: 2467-2487. doi: 10.1016/j.istruc.2020.09.066
|
[8] |
MOLDOVANU S, OBREJA C-D, BISWAS K C, et al. Towards accurate diagnosis of skin lesions using feedforward back propagation neural networks[J]. Diagnostics (Basel)
|
[9] |
王佳萍, 杜成斌, 王翔, 等. 基于XFEM和改进人工蜂群算法的结构内部缺陷反演[J]. 工程力学, 2019, 36(9): 25-31
WANG Jiaping, DU Chengbin, WANG Xiang, et al. Inverse analysis of internal defects in structures using extended finite element method and improved artificial bee colony algorithm[J]. Engineering Mechanics, 2019, 36(9): 25-31.(in Chinese)
|
[10] |
DU C, ZHAO W, JIANG S, et al. Dynamic XFEM-based detection of multiple flaws using an improved artificial bee colony algorithm[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 365: 112995. doi: 10.1016/j.cma.2020.112995
|
[11] |
RABINOVICH D, GIVOLI D, VIGDERGAUZ S. XFEM-based crack detection scheme using a genetic algorithm[J]. International Journal for Numerical Methods in Engineering, 2007, 71(9): 1051-1080. doi: 10.1002/nme.1975
|
[12] |
CHATZI E N, HIRIYUR B, WAISMAN H, et al. Experimental application and enhancement of the XFEM-GA algorithm for the detection of flaws in structures[J]. Computers and Structures, 2010, 89(7): 556-570.
|
[13] |
王佳萍, 杜成斌, 江守燕. 扩展有限元与遗传算法相结合的结构缺陷反演分析[J]. 力学与实践, 2017, 39(6): 591-596 doi: 10.6052/1000-0879-17-176
WANG Jiaping, DU Chengbin, JIANG Shouyan. Analysis of structural defect inversion based on extended finite element and genetic algorithm[J]. Mechanics in Engineering, 2017, 39(6): 591-596.(in Chinese) doi: 10.6052/1000-0879-17-176
|
[14] |
孟建军, 孟高阳, 李德仓. 基于SA-GA混合算法的动车组车辆轮重分配优化[J]. 应用数学和力学, 2021, 42(4): 363-372
MENG Jianjun, MENG Gaoyang, LI Decang. Optimization of wheel weight distribution for EMU vehicles based on the SA-GA hybrid algorithm[J]. Applied Mathematics and Mechanics, 2021, 42(4): 363-372.(in Chinese)
|
[15] |
WANG H Y, ZHANG Z X, LIU L M. Prediction and fitting of weld morphology of Al alloy-CFRP welding-rivet hybrid bonding joint based on GA-BP neural network[J]. Journal of Manufacturing Processes, 2021, 63: 109-120. doi: 10.1016/j.jmapro.2020.04.010
|
[16] |
WANG Z W, FEI Y, YE P X, et al. Crack characterization in ferromagnetic steels by pulsed eddy current technique based on GA-BP neural network model[J]. Journal of Magnetism and Magnetic Materials, 2020, 500: 166412. doi: 10.1016/j.jmmm.2020.166412
|
[17] |
江守燕, 杜成斌. 基于扩展有限元的结构内部缺陷(夹杂)的反演分析模型[J]. 力学学报, 2015, 47(6): 1037-1045 doi: 10.6052/0459-1879-15-134
JIANG Shouyan, DU Chengbin. Numerical model for identification of internal defect or inclusion based on extended finite elememt methods[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1037-1045.(in Chinese) doi: 10.6052/0459-1879-15-134
|
[18] |
张慧华. 典型不连续固体力学问题的数值求解[D]. 博士学位论文. 西安: 西安交通大学, 2009.
ZHANG Huihua. Numerical solutions to typical discontinuous problems in solid mechanics[D]. PhD Thesis. Xi’an: Xi’an Jiaotong University, 2009. (in Chinese)
|
[19] |
茹忠亮, 朱传锐, 张友良, 等. 断裂问题的扩展有限元法研究[J]. 岩土力学, 2011, 32(7): 2171-2176 doi: 10.3969/j.issn.1000-7598.2011.07.042
RU Zhongliang, ZHU Chuanrui, ZHANG Youliang, et al. Study of fracture problem with extended finite element method[J]. Rock and Soil Mechanics, 2011, 32(7): 2171-2176.(in Chinese) doi: 10.3969/j.issn.1000-7598.2011.07.042
|
[20] |
冉雨晴, 吴玮, 狄鑫. 基于遗传算法优化BP神经网络的管网漏失定位模型研究[J]. 水电能源科学, 2021, 39(5): 123-126
RAN Yuqing, WU Wei, DI Xin. Study on leakage location model of water supply network based on bp neural network optimized by genetic algorithm[J]. Water Resources and Power, 2021, 39(5): 123-126.(in Chinese)
|
[21] |
HOLLAND J H. Adaptation in Natural and Artificial Systems: an Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence[M]. Cambridge : The MIT Press, 1992.
|
[22] |
WANG X, AN S, XU Y Q, et al. A back propagation neural network model optimized by mind evolutionary algorithm for estimating Cd, Cr, and Pb concentrations in soils using vis-NIR diffuse reflectance spectroscopy[J]. Applied Sciences, 2020, 10(1): 51.
|
[23] |
中国航空研究院. 应力强度因子手册[M]. 增订版. 北京: 科学出版社, 1993.
Chinese Aeronautical Establishment. Stress Intensity Factor Manual[M]. revised and enlarged ed. Beijing: Science Press, 1993. (in Chinese)
|