Volume 42 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
LI Kai, YE Tianyu, WANG Jizeng. Stretching a Polymer Chain in a Confined Space[J]. Applied Mathematics and Mechanics, 2021, 42(10): 1008-1023. doi: 10.21656/1000-0887.420279
Citation: LI Kai, YE Tianyu, WANG Jizeng. Stretching a Polymer Chain in a Confined Space[J]. Applied Mathematics and Mechanics, 2021, 42(10): 1008-1023. doi: 10.21656/1000-0887.420279

Stretching a Polymer Chain in a Confined Space

doi: 10.21656/1000-0887.420279
  • Received Date: 2021-09-13
  • Rev Recd Date: 2021-09-27
  • Publish Date: 2021-10-01
  • The quantitative characterization of micromechanical properties of polymer biomaterials and the development of advanced biological micro-/nano- technology and devices need to quantitatively analyze the statistical thermodynamic properties and behaviors of polymer chains such as biological macromolecules in complex microenvironment. In the process of achieving this goal, the cross research of continuum mechanics and statistical thermodynamics plays a very important role. Aiming at the mechanics problems in this field, starting from the force stretching of DNA molecules, and by introducing several theoretical models describing the statistical thermodynamic properties of polymer chains, it is pointed out that the wormlike chain model has more significant advantages in describing the relationship between force and configuration change of semi-flexible polymer chains than other ideal random chain models, so that the qualitative and quantitative understanding of the statistical thermodynamic properties and behavior of polymers in complex microenvironment has become largely dependent on the relevant research progresses based on the wormlike chain model. Based on this fact, by reviewing the research on the influence of geometric constraints on the random conformation distribution of polymer chains, the research on the statistical thermodynamic model of polymer chains under the simultaneous action of tension and constraints, and the simulation research on the statistical physical properties of polymer chains based on high-performance computers, the latest progress and challenging problems in the research of statistical thermodynamic properties and behavior of worm chains under different constraints and stress microenvironments are summarized. Finally, through summary and analysis, it is pointed out that the study of statistical thermodynamics of worm chain in complex microenvironment is an important basis for understanding life phenomena from the molecular and cell scale, developing advanced micro- and nano- technology and constructing the constitutive relationship of soft matter. At present, it has become a very challenging frontier topic in the interdisciplinary of mechanics.
  • loading
  • RUBINSTEIN M, COLBY R H. Polymer Physics[M]. New York: Oxford University Press, 2003.
    [2]ARRUDA E M, BOYCE M C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials[J]. Journal of the Mechanics and Physics of Solids,1993,41(2): 389-412.
    [3]REISNER W, MORTON K J, RIEHN R, et al. Statics and dynamics of single DNA molecules confined in nanochannels[J]. Physical Review Letters,2005,94(19): 196101.
    [4]REISNER W, PEDERSEN J N, AUSTIN R H. DNA confinement in nanochannels: physics and biological applications[J]. Reports on Progress in Physics,2012,75(10): 106601.
    [5]BAO G. Mechanics of biomolecules[J]. Journal of the Mechanics and Physics of Solids,2002,50(11): 2237-2274.
    [6]DAI L, RENNER C B, DOYLE P S. The polymer physics of single DNA confined in nanochannels[J]. Advances in Colloid and Interface Science,2016,232: 80-100.
    [7]CHEN J Z. Theory of wormlike polymer chains in confinement[J]. Progress in Polymer Science,2016,54/55: 3-46.
    [8]KSTER S, PFOHL T. An in vitro model system for cytoskeletal confinement[J]. Cell Motility and the Cytoskeleton,2009,66(10): 771-776.
    [9]WOLFFE A. Chromatin: Structure and Function[M]. Academic Press, 1998.
    [10]JUN S, MULDER B. Entropy-driven spatial organization of highly confined polymers: lessons for the bacterial chromosome[J]. Proceedings of the National Academy of Sciences,2006,103(33): 12388-12393.
    [11]BELL S, TERENTJEV E M. Kinetics of tethered ligands binding to a surface receptor[J]. Macromolecules,2017,50(21): 8810-8815.
    [12]CERRITELLI M E, CHENG N, ROSENBERG A H, et al. Encapsidated conformation of bacteriophage T7 DNA[J]. Cell,1997,91(2): 271-280.
    [13]EARNSHAW W, HARRISON S. DNA arrangement in isometric phage heads[J]. Nature,1977,268(5621): 598-602.
    [14]LAM E T, HASTIE A, LIN C, et al. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly[J]. Nature Biotechnology,2012,30(8): 771-776.
    [15]DORFMAN K D. The fluid mechanics of genome mapping[J]. AICHE Journal,2013,59(2): 346-354.
    [16]CHAN E Y, GONCALVES N M, HAEUSLER R A, et al. DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags[J]. Genome Research,2004,14(6): 1137-1146.
    [17]HAN J, CRAIGHEAD H G. Separation of long DNA molecules in a microfabricated entropic trap array[J]. Science,2000,288(5468): 1026-1029.
    [18]YAMAKAWA H. Modern Theory of Polymer Solutions[M]. New York: Harper & Row, 1971.
    [19]AUSTIN R H, BRODY J P. Stretch genes[J]. Physics Today,1997,50(2): 32-38.
    [20]BUSTAMANTE C, SMITH S B, LIPHARDT J, et al. Single-molecule studies of DNA mechanics[J]. Current Opinion in Structural Biology,2000,10(3): 279-285.
    [21]KRATKY O, POROD G. Rntgenuntersuchung gelster fadenmoleküle[J]. Recueil des Travaux Chimiques des Pays-Bas,1949,68(12): 1106-1122.
    [22]HERMANS J, ULLMAN R. The statistics of stiff chains, with applications to light scattering[J]. Physica,1952,18(11): 951-971.
    [23]YAMAKAWA H. Helical Wormlike Chains in Polymer Solutions[M]. Springer, 1997.
    [24]FREED K F. Functional integrals and polymer statistics[J]. Advaces in Chemical Physics,1972,22: 1. DOI: 10.1002/9780470143728.ch1.
    [25]FEYNMAN R P, HIBBS A R, STYER D F. Quantum Mechanics and Path Integrals[M]. Courier Corporation, 2010.
    [26]WANG M D, YIN H, LANDICK R, et al. Stretching DNA with optical tweezers[J]. Biophysical Journal,1997,72(3): 1335-1346.
    [27]STRICK T, ALLEMAND J-F, CROQUETTE V, et al. Twisting and stretching single DNA molecules[J]. Progress in Biophysics and Molecular Biology,2000,74(1/2): 115-140.
    [28]COCCO S, MARKO J F, MONASSON R. Theoretical models for single-molecule DNA and RNA experiments: from elasticity to unzipping[J]. Comptes Rendus Physique,2002,3(5): 569-584.
    [29]SMITH S B, CUI Y, BUSTAMANTE C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules[J]. Science,1996,271(5250): 795-799.
    [30]DE GENNES P G, GENNES P G. Scaling Concepts in Polymer Physics[M]. Cornell University Press, 1979.
    [31]DOI M, EDWARDS S F, EDWARDS S F. The Theory of Polymer Dynamics[M]. Oxford University Press, 1988.
    [32]MARKO J F, SIGGIA E D. Stretching DNA[J]. Macromolecules,1995,28(26): 8759-8770.
    [33]KIERFELD J, NIAMPLOY O, SA-YAKANIT V, et al. Stretching of semiflexible polymers with elastic bonds[J]. The European Physical Journal E,2004,14(1): 17-34.
    [34]FLORY P J. Principles of Polymer Chemistry[M]. Cornell University Press, 1953.
    [35]DE GENNES P G. Dynamics of entangled polymer solutions, Ⅰ: the Rouse model[J]. Macromolecules,1976,9(4): 587-593.
    [36]WANG J Z, LI L, GAO H J. Compressed wormlike chain moving out of confined space: a model of DNA ejection from bacteriophage[J]. Acta Mechanica Sinica,2012,28(4): 1219-1226.
    [37]SCHIESSEL H. The physics of chromatin[J]. Journal of Physics: Condensed Matter,2003,15(19): R699.
    [38]DAI L, VAN DER MAAREL J, DOYLE P S. Extended de Gennes regime of DNA confined in a nanochannel[J]. Macromolecules,2014,47(7): 2445-2450.
    [39]ODIJK T. Physics of tightly curved semiflexible polymer chains[J]. Macromolecules,1993,26(25): 6897-6902.
    [40]ODIJK T. The statistics and dynamics of confined or entangled stiff polymers[J]. Macromolecules,1983,16(8): 1340-1344.
    [41]ODIJK T. Similarity applied to the statistics of confined stiff polymers[J]. Macromolecules,1984,17(3): 502-503.
    [42]ODIJK T. DNA confined in nanochannels: hairpin tightening by entropic depletion[J]. The Journal of Chemical Physics,2006,125(20): 204904.
    [43]DIJKSTRA M, FRENKEL D, LEKKERKERKER H N. Confinement free energy of semiflexible polymers[J]. Physica A,1993,193(3/4): 374-393.
    [44]BICOUT D J, BURKHARDT T W. Simulation of a semiflexible polymer in a narrow cylindrical pore[J]. Journal of Physics A,2001,34(29): 5745.
    [45]YANG Y, BURKHARDT T W, GOMPPER G. Free energy and extension of a semiflexible polymer in cylindrical confining geometries[J]. Physical Review E,2007,76(1): 011804.
    [46]WANG J, GAO H. A generalized bead-rod model for Brownian dynamics simulations of wormlike chains under strong confinement[J]. The Journal of Chemical Physics,2005,123(8): 084906.
    [47]CHEN J Z. Free energy and extension of a wormlike chain in tube confinement[J]. Macromolecules,2013,46(24): 9837-9844.
    [48]BURKHARDT T W. Free energy of a semiflexible polymer in a tube and statistics of a randomly-accelerated particle[J]. Journal of Physics A: Mathematical and General,1997,30(7): L167-L172.
    [49]GRASSBERGER P.Pruned-enriched Rosenbluth method: simulations of θ polymers of chain length up to 1 000 000[J]. Physical Review E,1997,56(3): 3682-3693.
    [50]LI R, WANG J. Stretching a semiflexible polymer in a tube[J]. Polymers,2016,8(9): 328.
    [51]WANG J, LI K. Statistical behaviors of semiflexible polymer chains stretched in rectangular tubes[J]. Polymers,2019,11(2): 260.
    [52]TREE D R, WANG Y, DORFMAN K D. Extension of DNA in a nanochannel as a rod-to-coil transition[J]. Physical Review Letters,2013,110(20): 208103.
    [53]CHEN J Z. Conformational properties of a back-folding wormlike chain confined in a cylindrical tube[J]. Physical Review Letters,2017,118(24): 247802.
    [54]MURALIDHAR A, TREE D R, DORFMAN K D. Backfolding of wormlike chains confined in nanochannels[J]. Macromolecules,2014,47(23): 8446-8458.
    [55]IARKO V, WERNER E, NYBERG L, et al. Extension of nanoconfined DNA: quantitative comparison between experiment and theory[J]. Physical Review E,2015,92(6): 062701.
    [56]WERNER E, PERSSON F, WESTERLUND F, et al. Orientational correlations in confined DNA[J]. Physical Review E,2012,86(4): 041802.
    [57]PUROHIT P K, KONDEV J, PHILLIPS R. Mechanics of DNA packaging in viruses[J]. Proceedings of the National Academy of Sciences,2003,100(6): 3173-3178.
    [58]LI M, WANG J. Stretching wormlike chains in narrow tubes of arbitrary cross-sections[J]. Polymers,2019,11(12): 2050.
    [59]DAI L, DOYLE P S. Comparisons of a polymer in confinement versus applied force[J]. Macromolecules,2013,46(15): 6336-6344.
    [60]CHEN Y L, LIN P K, CHOU C F. Generalized force-extension relation for wormlike chains in slit confinement[J]. Macromolecules,2010,43(24): 10204-10207.
    [61]TALONI A, YEH J W, CHOU C F. Scaling theory of stretched polymers in nanoslits[J]. Macromolecules,2013,46(19): 7989-8002.
    [62]DE HAAN H W, SHENDRUK T N. Force-extension for DNA in a nanoslit: mapping between the 3D and 2D limits[J]. ACS Macro Letters,2015,4(6): 632-635.
    [63]WANG J, GAO H. Stretching a stiff polymer in a tube[J]. Journal of Materials Science,2007,42(21): 8838-8843.
    [64]BURKHARDT T W. Free energy of a semiflexible polymer confined along an axis[J]. Journal of Physics A: Mathematical and General,1995,28(24): L629.
    [65]WANG J Z, LI R H. Stretching strongly confined semiflexible polymer chain[J]. Applied Mathematics and Mechanics(English Edition),2014,35(10): 1233-1238.
    [66]THUROFF F, OBERMAYER B, FREY E. Longitudinal response of confined semiflexible polymers[J]. Physical Review E,2011,83(2): 021802.
    [67]ERMAK D L, MCCAMMON J A. Brownian dynamics with hydrodynamic interactions[J]. The Journal of Chemical Physics,1978,69(4): 1352-1360.
    [68]HUANG J, SCHLICK T. Macroscopic modeling and simulations of supercoiled DNA with bound proteins[J]. The Journal of Chemical Physics,2002,117(18): 8573-8586.
    [69]LEWIS R J, ALLISON S A, EDEN D, et al. Brownian dynamics simulations of a three-subunit and a ten-subunit worm-like chain: comparison of results with trumbell theory and with experimental results from DNA[J]. The Journal of Chemical Physics,1988,89(4): 2490-2503.
    [70]ALLISON S A. Brownian dynamics simulation of wormlike chains. Fluorescence depolarization and depolarized light scattering[J]. Macromolecules,1986,19(1): 118-124.
    [71]JIAN H, VOLOGODSKII A V, SCHLICK T. A combined wormlike-chain and bead model for dynamic simulations of long linear DNA[J]. Journal of Computational Physics,1997,136(1): 168-179.
    [72]NEELOV I M, ADOLF D B, LYULIN A V, et al. Brownian dynamics simulation of linear polymers under elongational flow: bead-rod model with hydrodynamic interactions[J]. The Journal of Chemical Physics,2002,117(8): 4030-4041.
    [73]PETERA D, MUTHUKUMAR M. Brownian dynamics simulation of bead-rod chains under shear with hydrodynamic interaction[J]. The Journal of Chemical Physics,1999,111(16): 7614-7623.
    [74]AGARWAL U. Effect of initial conformation, flow strength, and hydrodynamic interaction on polymer molecules in extensional flows[J]. The Journal of Chemical Physics,2000,113(8): 3397-3403.
    [75]AGARWAL U, BHARGAVA R, MASHELKAR R. Brownian dynamics simulation of a polymer molecule in solution under elongational flow[J]. The Journal of Chemical Physics,1998,108(4): 1610-1617.
    [76]WANG J, GAO H. Brownian dynamics simulations of charged semiflexible polymers confined to curved surfaces[J]. Journal of the Mechanical Behavior of Biomedical Materials,2011,4(2): 174-179.
    [77]HESS B, BEKKER H, BERENDSEN H J, et al. LINCS: a linear constraint solver for molecular simulations[J]. Journal of Computational Chemistry, 1997,18(12): 1463-1472.
    [78]BEHRINGER H, EICHHORN R. Brownian dynamics simulations with hard-body interactions: spherical particles[J]. The Journal of Chemical Physics,2012,137(16): 164108.
    [79]PAMIES R, CIFRE J H, DE LA TORRE J G. Brownian dynamics simulation of polyelectrolyte dilute solutions under shear flow[J]. Journal of Polymer Science Part B: Polymer Physics,2007,45(1): 1-9.
    [80]MONTESI A, MORSE D C, PASQUALI M. Brownian dynamics algorithm for bead-rod semiflexible chain with anisotropic friction[J]. The Journal of Chemical Physics,2005,122(8): 084903.
    [81]LANG P S, OBERMAYER B, FREY E. Dynamics of a semiflexible polymer or polymer ring in shear flow[J]. Physical Review E,2014,89(2): 022606.
    [82]HSU H P, GRASSBERGER P. A review of Monte Carlo simulations of polymers with PERM[J]. Journal of Statistical Physics,2011,144(3): 597-637.
    [83]HSU H P, BINDER K. Semi-flexible polymer chains in quasi-one-dimensional confinement: a Monte Carlo study on the square lattice[J]. Soft Matter,2013,9(44): 10512-10521.
    [84]HSU H P, GRASSBERGER P. Polymers confined between two parallel plane walls[J]. The Journal of Chemical Physics,2004,120(4): 2034-2041.
    [85]MURALIDHAR A, TREE D R, WANG Y, et al. Interplay between chain stiffness and excluded volume of semiflexible polymers confined in nanochannels[J]. The Journal of Chemical Physics,2014,140(8): 084905.
    [86]LI X, DORFMAN K D. Effect of excluded volume on the force-extension of wormlike chains in slit confinement[J]. The Journal of Chemical Physics,2016,144(10): 104902.
    [87]JUN S, THIRUMALAI D, HA B Y. Compression and stretching of a self-avoiding chain in cylindrical nanopores[J]. Physical Review Letters,2008,101(13): 138101.
    [88]JUNG Y, JUN S, HA B Y. Self-avoiding polymer trapped inside a cylindrical pore: Flory free energy and unexpected dynamics[J]. Physical Review E,2009,79(6): 061912.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (710) PDF downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return