Volume 44 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
ZHANG Kai, WANG Keyong, QI Dongping. Research on the Fictitious Source Points of the Hybrid Fundamental Solution-Based Finite Element Method for Heat Conduction Problems[J]. Applied Mathematics and Mechanics, 2023, 44(4): 431-440. doi: 10.21656/1000-0887.430077
Citation: ZHANG Kai, WANG Keyong, QI Dongping. Research on the Fictitious Source Points of the Hybrid Fundamental Solution-Based Finite Element Method for Heat Conduction Problems[J]. Applied Mathematics and Mechanics, 2023, 44(4): 431-440. doi: 10.21656/1000-0887.430077

Research on the Fictitious Source Points of the Hybrid Fundamental Solution-Based Finite Element Method for Heat Conduction Problems

doi: 10.21656/1000-0887.430077
  • Received Date: 2022-03-10
  • Rev Recd Date: 2022-05-15
  • Publish Date: 2023-04-01
  • The hybrid fundamental solution-based finite element method was proposed for heat conduction problems. Firstly, 2 independent fields were assumed: the intra-element temperature field approximated through the linear combination of fundamental solutions, and the auxiliary frame temperature field in the same form as that in the conventional finite element method. Then, a modified variational functional was employed to link the 2 independent fields and derive the finite element formulation. However, the accuracy of the method is strongly dependent on the distribution and the number of source points. The source points were usually placed on 2 fictitious boundaries outside the element: one is similar to the element shape, the other is a circular one. Furthermore, the dual fictitious boundary scheme was proposed for comparison with the above fictitious boundaries. With different configurations of source points, 2 typical numerical examples were given to demonstrate the validity and the insensitivity to mesh distortion of the proposed method.
  • loading
  • [1]
    JIROUSEK J, LEON N. A powerful finite element for plate bending[J]. Computer Methods in Applied Mechanics & Engineering, 1977, 12(1): 77-96.
    [2]
    JIROUSEK J, VENKATESH A. Hybrid Trefftz plane elasticity elements with p-method capabilities[J]. International Journal for Numerical Methods in Engineering, 1992, 35(7): 1443-1472. doi: 10.1002/nme.1620350705
    [3]
    QIN Q H, WANG H. MATLAB and C Programming for Trefftz Finite Element Methods[M]. Boca Raton: CRC Press, 2008.
    [4]
    WANG H, QIN Q H. Hybrid FEM with fundamental solutions as trial functions for heat conduction simulation[J]. Acta Mechanica Solida Sinica, 2009, 22(5): 487-498. doi: 10.1016/S0894-9166(09)60300-1
    [5]
    SHE Z, WANG K Y, LI P C. Thermal analysis of multilayer coated fiber-reinforced composites by the hybrid Trefftz finite element method[J]. Composite Structures, 2019, 224: 110992. doi: 10.1016/j.compstruct.2019.110992
    [6]
    WEISSER S. Arbitrary order Trefftz-like basis functions on polygonal meshes and realization in BEM-based FEM[J]. Computers & Mathematics With Applications, 2014, 67(7): 1390-1406.
    [7]
    ZHOU J C, WANG K Y, LI P C, MIAO X D. Hybrid fundamental solution based finite element method for axisymmetric potential problems[J]. Engineering Analysis With Boundary Elements, 2018, 91: 82-91. doi: 10.1016/j.enganabound.2018.03.009
    [8]
    ZHOU J C, WANG K Y, LI P C. Hybrid fundamental solution based finite element method for axisymmetric potential problems with arbitrary boundary conditions[J]. Computers & Structures, 2019, 212: 72-85.
    [9]
    秦庆华. Hybrid-Trefftz有限元法的研究进展[J]. 力学进展, 1998, 28(1): 71-82. doi: 10.3321/j.issn:1000-0992.1998.01.006

    QIN Qinghua. Advances in hybrid-Trefftz finite element method[J]. Advances in Mechanics, 1998, 28(1): 71-82. (in Chinese) doi: 10.3321/j.issn:1000-0992.1998.01.006
    [10]
    王克用, 黄争鸣, 李培超, 等. 正交各向异性轴对称位势问题的Trefftz有限元分析[J]. 应用数学和力学, 2013, 34(5): 462-469. doi: 10.3879/j.issn.1000-0887.2013.05.004

    WANG Keyong, HUANG Zhengming, LI Peichao, et al. Trefftz finite element analysis of axisymmetric potential problems in orthotropic media[J]. Applied Mathematics and Mechanics, 2013, 34(5): 462-469. (in Chinese) doi: 10.3879/j.issn.1000-0887.2013.05.004
    [11]
    CAO C Y, QIN Q H, YU A B. Micromechanical Analysis of heterogeneous composites using hybrid Trefftz FEM and hybrid fundamental solution based FEM[J]. Journal of Mechanics, 2013, 29(4): 661-674. doi: 10.1017/jmech.2013.54
    [12]
    WANG H, QIN Q H. Fundamental-solution-based finite element model for plane orthotropic elastic bodies[J]. European Journal of Mechanics A: Solids, 2010, 29(5): 801-809. doi: 10.1016/j.euromechsol.2010.05.003
    [13]
    CAO C Y, QIN Q H. Hybrid fundamental solution based finite element method: theory and applications[J]. Advances in Mathematical Physics, 2015, 2015: 916029.
    [14]
    WANG K Y, ZHOU J C, ZENG R Y. Hybrid Trefftz finite element method for axisymmetric elasticity problems under torsion[J]. Materials Today Communications, 2021, 27: 102420. doi: 10.1016/j.mtcomm.2021.102420
    [15]
    WANG H, LIN W, QIN Q H. Fundamental-solution-based hybrid finite element with singularity control for two-dimensional mixed-mode crack problems[J]. Engineering Analysis With Boundary Elements, 2019, 108: 267-278. doi: 10.1016/j.enganabound.2019.08.016
    [16]
    周枫林, 谢贵重, 张见明, 等. 角度-距离复合变换法消除边界积分方程近奇异性[J]. 应用数学和力学, 2020, 41(5): 530-540. doi: 10.21656/1000-0887.400229

    ZHOU Fenglin, XIE Guizhong, ZHANG Jianming, et al. Near-singularity cancellation with the angle-distance transformation method for boundary integral equations[J]. Applied Mathematics and Mechanics, 2020, 41(5): 530-540. (in Chinese) doi: 10.21656/1000-0887.400229
    [17]
    GRABSKI J K, KARAGEORGHIS A. Moving pseudo-boundary method of fundamental solutions for nonlinear potential problems[J]. Engineering Analysis With Boundary Elements, 2019, 105: 78-86. doi: 10.1016/j.enganabound.2019.04.009
    [18]
    GORZELAŃCZYK P, KOŁODZIEJ J A. Some remarks concerning the shape of the source contour with application of the method of fundamental solutions to elastic torsion of prismatic rods[J]. Engineering Analysis With Boundary Elements, 2008, 32(1): 64-75. doi: 10.1016/j.enganabound.2007.05.004
    [19]
    潘文峰, 戴海. 具有双重虚拟边界的基本解方法求解Stokes问题[J]. 中国科技论文, 2018, 13(5): 563-567. doi: 10.3969/j.issn.2095-2783.2018.05.015

    PAN Wenfeng, DAI Hai. Method of fundamental solutions with double fictitious boundaries for solving Stokes problems[J]. China Sciencepaper, 2018, 13(5): 563-567. (in Chinese) doi: 10.3969/j.issn.2095-2783.2018.05.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (447) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return