Citation: | SHEN Lulu, CAI Fangyuan, YANG Bo. Elasticity Solutions for Cylindrical Bending of Functionally Graded Piezoelectric Material Plates[J]. Applied Mathematics and Mechanics, 2023, 44(3): 272-281. doi: 10.21656/1000-0887.430224 |
Functionally graded piezoelectric materials (FGPMs), combining the properties of functionally graded materials and piezoelectric materials, provides a new idea for multi-functional and intelligent lightweight components, and has broad application prospects in electronic devices. Based on the elastic and electric equilibrium equations, the Mian and Spencer functionally graded plate theory was extended from elastic materials to piezoelectric materials to study the cylindrical bending of FGPM plates, where the material elastic constants, piezoelectric and dielectric parameters were assumed to vary continuously and arbitrarily along the thickness direction. Accordingly, the elasticity solutions for cylindrical bending of FGPMs plates under the uniform transverse loading were obtained. Numerical examples were given to demonstrate the piezoelectric effects on the static responses of the presented FGPMs plates.
[1] |
刘涛, 汪超, 刘庆运. 基于等几何方法的压电功能梯度板动力学及主动振动控制分析[J]. 工程力学, 2020, 37(12): 228-242 doi: 10.6052/j.issn.1000-4750.2020.04.0266
LIU Tao, WANG Chao, LIU Qingyun. Analysis for dynamics and active vibration control of piezoelectric functionally graded plates based on isogeometric method[J]. Engineering Mechanics, 2020, 37(12): 228-242.(in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0266
|
[2] |
韩杰才, 徐丽, 王保林, 等. 梯度功能材料的研究进展及展望[J]. 固体火箭技术, 2004, 27(3): 207-215 doi: 10.3969/j.issn.1006-2793.2004.03.012
HAN Jiecai, XU Li, WANG Baolin, et al. Progress and prospects of functional gradient materials[J]. Journal of Solid Rocket Technology, 2004, 27(3): 207-215.(in Chinese) doi: 10.3969/j.issn.1006-2793.2004.03.012
|
[3] |
CARL C M, WU M K, MOY K. Piezoelectric ceramics with functional gradients: a new application in material design[J]. Journal of the American Ceramic Society, 1996, 79(3): 809-812.
|
[4] |
杨博, 丁皓江, 陈伟球. 功能梯度板柱面弯曲的弹性力学解[J]. 应用数学和力学, 2008, 29(8): 905-910 doi: 10.3879/j.issn.1000-0887.2008.08.003
YANG Bo, DING Haojiang, CHEN Weiqiu. Elasticity solutions for functionally graded plates in cylindrial bending[J]. Applied Mathematics and Mechanics, 2008, 29(8): 905-910.(in Chinese) doi: 10.3879/j.issn.1000-0887.2008.08.003
|
[5] |
边祖光. 功能梯度材料板壳结构的耦合问题研究[D]. 博士学位论文. 杭州: 浙江大学, 2005.
BIAN Zuguang. On coupled problems of functionally graded materials plates and shells[D]. PhD Thesis. Hangzhou: Zhejiang University, 2005. (in Chinese)
|
[6] |
ALMAJID A, TAYA M, HUDNUT S W, et al. Analysis of out-of-plane displacement and stress field in a piezocomposite plate with functionally graded microstructure[J]. International Journal of Solids and Structures, 2001, 38(19): 3377-3391. doi: 10.1016/S0020-7683(00)00264-X
|
[7] |
ZHONG Z, SHANG E T. Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate[J]. International Journal of Solids and Structures, 2003, 40(20): 5335-5352. doi: 10.1016/S0020-7683(03)00288-9
|
[8] |
NAVAZI H M, HADDADPOUR H. Nonlinear cylindrical bending analysis of shear deformable functionally graded plates under different loadings using analytical methods[J]. International Journal of Mechanical Sciences, 2008, 50(12): 1650-1657. doi: 10.1016/j.ijmecsci.2008.08.010
|
[9] |
TAHANI M, MIRZABABAEE S M. Non-linear analysis of functionally graded plates in cylindrical bending under thermomechanical loadings based on a layerwise theory[J]. European Journal of Mechanics A: Solids, 2008, 28(2): 248-256.
|
[10] |
WANG Y, XU R Q, DING H J. Analytical solutions of functionally graded piezoelectric circular plates subjected to axisymmetric loads[J]. Acta Mechanica, 2010, 215(1/4): 287-305.
|
[11] |
ZHONG Z, CHEN S, SHANG E. Analytical solution of a functionally graded plate in cylindrical bending[J]. Mechanics of Advanced Materials and Structures, 2010, 17(8): 595-602. doi: 10.1080/15376494.2010.517729
|
[12] |
刘五祥, 仲政. 任意梯度分布功能梯度板的柱形弯曲分析[J]. 武汉理工大学学报, 2008, 30(4): 106-109
LIU Wuxiang, ZHONG Zheng. Analysis for functionally gradient plate of arbitrary gradient distribution in cylindrical bending[J]. Journal of Wuhan University of Technology, 2008, 30(4): 106-109.(in Chinese)
|
[13] |
LI X Y, WU J, DING H J. 3D analytical solution for a functionally graded transversely isotropic piezoelectric circular plate under tension and bending[J]. International Journal of Engineering Science, 2011, 49(7): 664-676. doi: 10.1016/j.ijengsci.2011.03.001
|
[14] |
LI Y S, PAN E. Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory[J]. International Journal of Engineering Science, 2015, 97: 40-59. doi: 10.1016/j.ijengsci.2015.08.009
|
[15] |
ZENKOUR A M, HAFED Z S. Bending analysis of functionally graded piezoelectric plates via quasi-3D trigonometric theory[J]. Mechanics of Advanced Materials and Structures, 2020, 27(18): 1551-1562. doi: 10.1080/15376494.2018.1516325
|
[16] |
DEHSARAJI M L, SAIDI A R, MOHAMMADI M. Bending analysis of thick functionally graded piezoelectric rectangular plates using higher-order shear and normal deformable plate theory[J]. Structural Engineering and Mechanics, 2020, 73(3): 259-269.
|
[17] |
王平远, 李成, 姚林泉. 基于非局部应变梯度理论功能梯度纳米板的弯曲和屈曲研究[J]. 应用数学和力学, 2021, 42(1): 15-26
WANG Pingyuan, LI Cheng, YAO Linquan. Bending and buckling of functionally graded nanoplates based on the nonlocal strain gradient theory[J]. Applied Mathematics and Mechanics, 2021, 42(1): 15-26.(in Chinese)
|
[18] |
刘旭, 姚林泉. 热环境中旋转功能梯度纳米环板的振动分析[J]. 应用数学和力学, 2020, 41(11): 1224-1236
LIU Xu, YAO Linquan. Vibration analysis of rotating functionally gradient nanocycle plates in thermal environment[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1224-1236.(in Chinese)
|
[19] |
MIAN M A, SPENCER A J M. Exact solutions for functionally graded and laminated elastic materials[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(12): 2283-2295. doi: 10.1016/S0022-5096(98)00048-9
|
[20] |
孙烨丽, 沈璐璐, 杨博. 功能梯度板中Griffith裂纹尖端应力场的三维解析研究[J]. 应用数学和力学, 2021, 42(1): 36-48
SUN Yeli, SHEN Lulu, YANG Bo. 3D analytical study of stress field at Griffith crack tip in functionally graded plates[J]. Applied Mathematics and Mechanics, 2021, 42(1): 36-48.(in Chinese)
|
[21] |
仲政, 尚尔涛. 功能梯度热释电材料矩形板的三维精确分析[J]. 力学学报, 2003, 35(5): 542-552 doi: 10.3321/j.issn:0459-1879.2003.05.005
ZHONG Zheng, SHANG Ertao. Three dimensional exact analysis of functionally gradient piezothermoelectric material rectangular plate[J]. Acta Mechanica, 2003, 35(5): 542-552.(in Chinese) doi: 10.3321/j.issn:0459-1879.2003.05.005
|
[22] |
NAVAZI H M, HADDADPOUR H, RASEKH M. An analytical solution for nonlinear cylindrical bending of functionally graded plates[J]. Thin-Walled Structures, 2006, 44(11): 1129-1137. doi: 10.1016/j.tws.2006.10.013
|
[23] |
柳彬彬. 功能梯度压电材料矩形板热-电-机械耦合三维分析[D]. 硕士学位论文. 合肥: 合肥工业大学, 2007.
LIU Binbin. Three dimensional analysis of thero-meehanical-electric behaviour of functionally gradient piezoelectric material rectangular plate[D]. Maste Thesis. Hefei: Hefei University of Technology, 2007. (in Chinese)
|