Volume 44 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
ZHU Hongjun, LIU Wenli, GAO Yue. Experimental Study on the Vortex-Induced Vibration of Fixed-Hinged Flexible Risers[J]. Applied Mathematics and Mechanics, 2023, 44(2): 141-151. doi: 10.21656/1000-0887.430320
Citation: ZHU Hongjun, LIU Wenli, GAO Yue. Experimental Study on the Vortex-Induced Vibration of Fixed-Hinged Flexible Risers[J]. Applied Mathematics and Mechanics, 2023, 44(2): 141-151. doi: 10.21656/1000-0887.430320

Experimental Study on the Vortex-Induced Vibration of Fixed-Hinged Flexible Risers

doi: 10.21656/1000-0887.430320
  • Received Date: 2022-10-11
  • Rev Recd Date: 2023-01-03
  • Available Online: 2023-02-03
  • Publish Date: 2023-02-15
  • The top ends of marine risers are usually hinged under the floating platform, and the vortex-induced vibration due to ocean currents often leads to the potential fatigue damage. The non-intrusive optical measurement (high-speed camera) was employed to monitor the displacements of top-hinged-and-bottom-fixed flexible risers arranged in a circulating water flume. The experimental results indicate that, both the mode order of the riser excited in 3 directions and the dominant frequency increase gradually with the reduced velocity. The maximum out-of-plane root-mean-square vibration amplitude has a first downward and then upward trend in the mode transition cases. The spatial distribution of energy transfer between the fluid and the riser varies with the direction, resulting in the asynchronous mode transition. One of the in-plane vibration frequency coincides with the out-of-plane dominant one, which, if dominating the in-plane response, will make a strong coupling mode, or else a weak coupling mode.

  • loading
  • [1]
    VANDIVER J K, MA L X, RAO Z B. Revealing the effects of damping on the flow-induced vibration of flexible cylinders[J]. Journal of Sound and Vibration, 2018, 433: 29-54. doi: 10.1016/j.jsv.2018.07.009
    [2]
    BAO Y, ZHU H B, HUAN P, et al. Numerical prediction of vortex-induced vibration of flexible riser with thick strip method[J]. Journal of Fluids and Structures, 2019, 89: 166-173. doi: 10.1016/j.jfluidstructs.2019.02.010
    [3]
    GAO Y, ZOU L, ZONG Z, et al. Numerical prediction of vortex-induced vibrations of a long flexible cylinder in uniform and linear shear flows using a wake oscillator model[J]. Ocean Engineering, 2019, 171: 157-171. doi: 10.1016/j.oceaneng.2018.10.044
    [4]
    GAO Y, YANG B, ZOU L, et al. Vortex-induced vibrations of a long flexible cylinder in linear and exponential shear flows[J]. China Ocean Engineering, 2019, 33(1): 44-56. doi: 10.1007/s13344-019-0005-9
    [5]
    BAI X, LE Z B, QIN W. Effect of traveling waves on a long slender cylinder in vortex-induced vibration with two degrees of freedom[J]. Computers and Fluids, 2019, 193: 104270. doi: 10.1016/j.compfluid.2019.104270
    [6]
    KUMAR R P, NALLARARASU S. VIV response of risers with large aspect ratio and low rigidity using a numerical scheme based on wake oscillator model[J]. Applied Ocean Research, 2022, 118: 103011. doi: 10.1016/j.apor.2021.103011
    [7]
    GOU R Y, ZHANG X D, YANG W W, et al. Nonlinear dynamics of three-dimensional prediction model for a flexible riser under linearly sheared currents[J]. Arabian Journal for Science and Engineering, 2019, 44: 829-844. doi: 10.1007/s13369-018-3288-x
    [8]
    HAN X X, LIN W, QIN A, et al. Understanding vortex-induced vibration characteristics of a long fexible marine riser by a bidirectional fuid-structure coupling method[J]. Journal of Marine Science and Technology, 2020, 25: 620-639. doi: 10.1007/s00773-019-00663-y
    [9]
    PANG J H, ZHU B S, ZING Z. A numerical simulation model for the vortex induced vibration of flexible risers using dynamic stiffness matrices[J]. Ocean Engineering, 2019, 178: 306-320. doi: 10.1016/j.oceaneng.2019.03.007
    [10]
    GEDIKLI E D, CHELIDZE D, DAHL J M. Bending dominated flexible cylinder experiments reveal insights into modal interactions for flexible body vortex-induced vibrations[C]//Proceedings of the Twenty-Eighth (2018) International Ocean and Polar Engineering Conference. Sapporo, Japan, 2018.
    [11]
    KIM J D, JANG B S, YUN R H, et al. Improvement of the bending behavior of a flexible riser, part ii: hysteretic modeling of bending stiffness in global dynamic analysis[J]. Applied Ocean Research, 2020, 101: 102249. doi: 10.1016/j.apor.2020.102249
    [12]
    FAN D X, WANG Z C, TRIANTAFYLLOU M S, et al. Mapping the properties of the vortex-induced vibrations of flexible cylinders in uniform oncoming flow[J]. Journal of Fluid Mechanics, 2019, 881: 815-858. doi: 10.1017/jfm.2019.738
    [13]
    高云, 邹丽, 宗智. 两端铰接的细长柔性圆柱体涡激振动响应特性数值研究[J]. 力学学报, 2018, 50(1): 9-20 doi: 10.6052/0459-1879-17-340

    GAO Yun, ZOU Li, ZONG Zhi. Numerical study of response performance of vortex-induced vibration on a flexible cylinder with pinned-pinned boundary condition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 9-20.(in Chinese) doi: 10.6052/0459-1879-17-340
    [14]
    LIN K, WANG J S. Numerical simulation of vortex-induced vibration of long flexible risers using a SDVM-FEM coupled method[J]. Ocean Engineering, 2019, 172: 468-486. doi: 10.1016/j.oceaneng.2018.12.006
    [15]
    LI Y L, GUO S X, CHEN W L. Analysis on multi-frequency vortex-induced vibration and mode competition of flexible deep-ocean riser in sheared fluid fields[J]. Journal of Petroleum Science and Engineering, 2018, 163: 378-386. doi: 10.1016/j.petrol.2018.01.008
    [16]
    CHEN Z S, RHEE S H. Effect of traveling wave on the vortex-induced vibration of a long flexible pipe[J]. Applied Ocean Research, 2019, 84: 122-132. doi: 10.1016/j.apor.2018.12.011
    [17]
    SEYED-AGHAZADEH B, EDRAKI M, MODARRES-SADEGHI Y. Effects of boundary conditions on vortex-induced vibration of a fully submerged flexible cylinder[J]. Experiments in Fluids, 2019, 60: 38. doi: 10.1007/s00348-019-2681-x
    [18]
    GAO Y, ZHANG Z Z, ZOU L, et al. Effect of boundary condition and aspect ratio on vortex-induced vibration response of a circular cylinder[J]. Ocean Engineering, 2019, 188: 106244. doi: 10.1016/j.oceaneng.2019.106244
    [19]
    孙云卿, 吴志强, 章国齐, 等. 海洋立管双模态动力学分岔分析[J]. 应用数学和力学, 2020, 41(5): 480-490

    SUN Yunqing, WU Zhiqiang, ZHANG Guoqi, et al. Bifurcation analysis of dual-mode dynamics for marine risers[J]. Applied Mathematics and Mechanics, 2020, 41(5): 480-490.(in Chinese)
    [20]
    严浩, 代胡亮, 王琳, 等. 气-液横向流动下悬臂柱体结构涡激振动机理研究[J]. 应用数学和力学, 2022, 43(5): 577-585

    YAN Hao, DAI Huliang, WANG Lin, et al. A study on the vortex-induced vibration mechanism of cantilever cylinders under gas-liquid cross flows[J]. Applied Mathematics and Mechanics, 2022, 43(5): 577-585.(in Chinese)
    [21]
    ZHU H J, LIN P Z, YAO J. An experimental investigation of vortex-induced vibration of a curved flexible pipe in shear flows[J]. Ocean Engineering, 2016, 121: 62-75. doi: 10.1016/j.oceaneng.2016.05.025
    [22]
    ZHU H J, LIN Z P. Numerical simulation of the vortex-induced vibration of a curved flexible riser in shear flow[J]. China Ocean Engineering, 2018, 32(3): 301-311. doi: 10.1007/s13344-018-0031-z
    [23]
    ZHU H J, LIN P Z, GAO Y. Vortex-induced vibration and mode transition of a curved flexible free-hanging cylinder in exponential shear flows[J]. Journal of Fluids and Structures, 2019, 84: 56-76. doi: 10.1016/j.jfluidstructs.2018.10.009
    [24]
    ZHU H J, HU J, GAO Y, et al. Spatial-temporal mode transition in vortex-induced vibration of catenary flexible riser[J]. Journal of Fluids and Structures, 2021, 102: 103234. doi: 10.1016/j.jfluidstructs.2021.103234
    [25]
    ZHAO L, TAN Z M, HOU Y C, et al. Experimental research on vortex-induced vibration of flexible catenary riser model[C]//ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. Madrid, Spain, 2018: OMAE2018-78363.
    [26]
    ZHU H J, GAO Y, ZHAO H L. Coupling vibration response of a curved flexible riser under the combination of internal slug flow and external shear current[J]. Journal of Fluids and Structures, 2019, 91: 102724. doi: 10.1016/j.jfluidstructs.2019.102724
    [27]
    HUERA-HUARTE F J, BEARMAN P W. Vortex and wake-induced vibrations of a tandem arrangement of two flexible circular cylinders with near wake interference[J]. Journal of Fluids and Structures, 2011, 27(5/6): 824-828.
    [28]
    HUERA-HUARTE F J, BANGASH Z A, GONZÁLEZ L M. Towing tank experiments on the vortex-induced vibrationsof low mass ratio long flexible cylinders[J]. Journal of Fluids and Structures, 2014, 48: 81-92. doi: 10.1016/j.jfluidstructs.2014.02.006
    [29]
    ASSI G R S, SRINIL N, FREIRE C M, et al. Experimental investigation of the flow-induced vibration of a curved cylinder in convex and concave configurations[J]. Journal of Fluids and Structures, 2014, 44: 52-66. doi: 10.1016/j.jfluidstructs.2013.10.011
    [30]
    SEYED-AGHAZADEH B, MODARRES-SADEGHI Y. Reconstructing the vortex-induced-vibration response of flexible cylinders using limited localized measurement points[J]. Journal of Fluids and Structures, 2016, 65: 433-446. doi: 10.1016/j.jfluidstructs.2016.06.006
    [31]
    XU W H, LUAN Y S, HAN Q H, et al. The effect of yaw angle on VIV suppression for an inclined flexible cylinder fitted with helical strakes[J]. Applied Ocean Research, 2017, 67: 263-276. doi: 10.1016/j.apor.2017.07.014
    [32]
    ZHU H J, ZHAO H L, XIE Y P, et al. Experimental investigation on the alteration of natural frequency of a flexible pipe adjacent to a bottom plane with the consideration of pipe-plane impact[J]. Physics of Fluids, 2022, 34(4): 047106. doi: 10.1063/5.0085446
    [33]
    陈东阳, ABBAS L K, 王国平, 等. 流场环境对柔性立管湿模态的影响[J]. 哈尔滨工程大学学报, 2017, 38(10): 1587-1594 doi: 10.11990/jheu.201605083

    CHEN Dongyang, ABBAS L K, WANG Guoping, et al. Influence of flow field environment on wet modal vibration of flexible riser[J]. Journal of Harbin Engineering University, 2017, 38(10): 1587-1594.(in Chinese) doi: 10.11990/jheu.201605083
    [34]
    姜峰, 郑运虎, 梁瑞, 等. 海洋立管湿模态振动分析[J]. 西南石油大学学报(自然科学版), 2015, 37(5): 159-166

    JIANG Feng, ZHENG Yunhu, LIANG Rui, et al. An analysis of the wet modal vibration of marine riser[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(5): 159-166.(in Chinese)
    [35]
    KHALAK A, WILLIAMSON C H K. Dynamics of a hydroelastic cylinder with very low mass and damping[J]. Journal of Fluids and Structures, 1996, 10(5): 455-472. doi: 10.1006/jfls.1996.0031
    [36]
    FENG C C. The measurement of vortex induced effects in flow past stationary and oscillating circular and D-section cylinders[D]. Master Thesis. Vancouver, Canada: University of British Columbia, 1968.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (608) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return