Citation: | QIAO Xinzhou, ZHAO Yuetong, FANG Xiurong, LIU Peng. Non-Probabilistic Reliability Indexes Based on the Generalized Super Ellipsoid Model[J]. Applied Mathematics and Mechanics, 2024, 45(4): 458-469. doi: 10.21656/1000-0887.440061 |
[1] |
YAN Y H, WANG X J, LI Y L. Structural reliability with credibility based on the non-probabilistic set-theoretic analysis[J]. Aerospace Science and Technology, 2022, 127: 107730. doi: 10.1016/j.ast.2022.107730
|
[2] |
CHANG Q, ZHOU C C, WEI P F, et al. A new non-probabilistic time-dependent reliability model for mechanisms with interval uncertainties[J]. Reliability Engineering & System Safety, 2021, 215: 107771.
|
[3] |
FANG P Y, LI S H, GUO X L, et al. Response surface method based on uniform design and weighted least squares for non-probabilistic reliability analysis[J]. International Journal for Numerical Methods in Engineering, 2020, 121(18): 4050-4069. doi: 10.1002/nme.6426
|
[4] |
郭书祥, 吕震宙, 冯元生. 基于区间分析的结构非概率可靠性模型[J]. 计算力学学报, 2001, 18(1): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200101009.htm
GUO Shuxiang, LÜ Zhenzhou, FENG Yuansheng. A non-probabilistic model of structural reliability based on interval analysis[J]. Chinese Journal of Computational Mechanics, 2001, 18(1): 56-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200101009.htm
|
[5] |
曹鸿钧, 段宝岩. 基于凸集合模型的非概率可靠性研究[J]. 计算力学学报, 2005, 22(5): 546-549. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200505007.htm
CAO Hongjun, DUAN Baoyan. An approach on the non-probabilistic reliability of structures based on uncertainty convex models[J]. Chinese Journal of Computational Mechanics, 2005, 22(5): 546-549. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200505007.htm
|
[6] |
JIANG C, ZHANG Q F, HAN X, et al. A non-probabilistic structural reliability analysis method based on a multidimensional parallelepiped convex model[J]. Acta Mechanica, 2013, 225(2): 383-395.
|
[7] |
MENG Z, HU H, ZHOU H L. Super parametric convex model and its application for non-probabilistic reliability-based design optimization[J]. Applied Mathematical Modelling, 2018, 55(5): 354-370.
|
[8] |
QIAO X Z, SONG L F, LIU P, et al. Invariance problem in structural non-probabilistic reliability index[J]. Journal of Mechanical Science and Technology, 2021, 35(11): 4953-4961. doi: 10.1007/s12206-021-1014-1
|
[9] |
WANG L, WANG X J, CHEN X, et al. Time-variant reliability model and its measure index of structures based on a non-probabilistic interval process[J]. Acta Mechanica, 2015, 226: 3221-3241. doi: 10.1007/s00707-015-1379-2
|
[10] |
ZHAN J J, LUO Y J, ZHANG X P, et al. A general assessment index for non-probabilistic reliability of structures with bounded field and parametric uncertainties[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 366(12): 113046.
|
[11] |
WANG X J, QIU Z P, ELISHAKOFF I. Non-probabilistic set-theoretic model for structural safety measure[J]. Acta Mechanica, 2008, 198: 51-64. doi: 10.1007/s00707-007-0518-9
|
[12] |
JIANG C, BI R G, LU G Y, et al. Structural reliability analysis using non-probabilistic convex model[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 254: 83-98. doi: 10.1016/j.cma.2012.10.020
|
[13] |
HONG L X, LI H C, FU J F, et al. Hybrid active learning method for non-probabilistic reliability analysis with multi super ellipsoidal model[J]. Reliability Engineering & System Safety, 2022, 222: 108414.
|
[14] |
JIANG C, NI B Y, HAN X, et al. Non-probabilistic convex model process: a new method of time-variant uncertainty analysis and its application to structural dynamic reliability problems[J]. Computer Methods in Applied Mechanics & Engineering, 2014, 268: 656-676.
|
[15] |
QIAO X Z, WANG B, FANG X R, et al. Non-probabilistic reliability bounds for series structural systems[J]. International Journal of Computational Methods, 2021, 18(9): 2150038. doi: 10.1142/S0219876221500389
|
[16] |
CAO L X, LIU J, XIE L, et al. Non-probabilistic polygonal convex set model for structural uncertainty quantification[J]. Applied Mathematical Modelling, 2021, 89(1): 504-518.
|
[17] |
NI B Y, ELISHAKOFF I, JIANG C, et al. Generalization of the super ellipsoid concept and its application in mechanics[J]. Applied Mathematical Modelling, 2016, 40(21/22): 9427-9444.
|
[18] |
AYYASAMY S, RAMU P, ELISHAKOFF I. Chebyshev inequality-based inflated convex hull for uncertainty quantification and optimization with scarce samples[J]. Structural and Multidisciplinary Optimization, 2021, 64(4): 2267-2285. doi: 10.1007/s00158-021-02981-5
|
[19] |
ELISHAKOFF I, FANG T, SARLIN N, et al. Uncertainty quantification and propagation based on hybrid experimental, theoretical, and computational treatment[J]. Mechanical Systems and Signal Processing, 2021, 147(1): 107058.
|
[20] |
刘成立, 吕震宙, 罗志清, 等. 一种通用的稳健可靠性指标[J]. 机械工程学报, 2011, 47(10): 192-198. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201110032.htm
LIU Chengli, LÜ Zhenzhou, LUO Zhiqing, et al. A general robust reliability index[J]. Journal of Mechanical Engineering, 2011, 47(10): 192-198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201110032.htm
|
[21] |
矿用高强度圆环链: GB/T 12718—2009[S]. 北京: 中国标准出版社, 2009.
High-tensile steel chains (round link) for mining: GB/T 12718—2009[S]. Beijing: Standards Press of China, 2009. (in Chinese)
|