Volume 45 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
XU Wanyin, XIE Yu, QIAN Jin. Adhesive Performances of 3D Printed Biomimetic Mussel Byssal Structures[J]. Applied Mathematics and Mechanics, 2024, 45(3): 261-272. doi: 10.21656/1000-0887.440162
Citation: XU Wanyin, XIE Yu, QIAN Jin. Adhesive Performances of 3D Printed Biomimetic Mussel Byssal Structures[J]. Applied Mathematics and Mechanics, 2024, 45(3): 261-272. doi: 10.21656/1000-0887.440162

Adhesive Performances of 3D Printed Biomimetic Mussel Byssal Structures

doi: 10.21656/1000-0887.440162
  • Received Date: 2023-05-29
  • Rev Recd Date: 2023-07-31
  • Publish Date: 2024-03-01
  • The mussel byssal is a high-performance biological device that provides adhesion between the mussels and solid surfaces in different environments. In recent years, researchers paid increasing attention to the quantitative effects of the composition and macro/microstructure of the mussel byssal on its adhesion performance, with insights for the design of biomimetic adhesive devices. Here, the 3D printing technique was combined with the detachment test and the finite element method to systematically investigate the effects of shapes and geometric parameters on the detachment modes and adhesive properties of biomimetic mussel byssal structures. The results reveal the detachment mechanism of the mussel byssal and show that, the mussel byssal has an optimal thread direction angle resulting in optimal adhesion. The effects of the thread-plaque junction position and the plaque bottom shape on adhesion properties were explored. Furthermore, the simulated complete detachment process of the bundle-like mussel byssal array under vertical traction, and the obtained sawtooth force-displacement curve indicates that, the bundle model has a relatively stable ability to resist detachment. These findings help understand the detachment behavior of the mussel byssal in nature and provide a theoretical guidance for the optimization design of biomimetic adhesive devices.
  • loading
  • [1]
    COYNE K J, QIN X X, WAITE J H. Extensible collagen in mussel byssus: a natural block copolymer[J]. Science, 1997, 277(5333): 1830-1832. doi: 10.1126/science.277.5333.1830
    [2]
    PRIEMEL T, DEGTYAR E, DEAN M N, et al. Rapid self-assembly of complex biomolecular architectures during mussel byssus biofabrication[J]. Nature Communications, 2017, 8(1): 14539. doi: 10.1038/ncomms14539
    [3]
    BERTOLDI K, BOYCE M C. Mechanics of the hysteretic large strain behavior of mussel byssus threads[J]. Journal of Materials Science, 2007, 42(21): 8943-8956. doi: 10.1007/s10853-007-1649-z
    [4]
    GEORGE M N, CARRINGTON E. Environmental post-processing increases the adhesion strength of mussel byssus adhesive[J]. Biofouling, 2018, 34(4): 388-397. doi: 10.1080/08927014.2018.1453927
    [5]
    QIN Z, BUEHLER M J. Impact tolerance in mussel thread networks by heterogeneous material distribution[J]. Nature Communications, 2013, 4(1): 2187. doi: 10.1038/ncomms3187
    [6]
    SUHRE M H, GERTZ M, STEEGBORN C, et al. Structural and functional features of a collagen-binding matrix protein from the mussel byssus[J]. Nature Communications, 2014, 5(1): 3392. doi: 10.1038/ncomms4392
    [7]
    DESMOND K W, ZACCHIA N A, WAITE J H, et al. Dynamics of mussel plaque detachment[J]. Soft Matter, 2015, 11(34): 6832-6839. doi: 10.1039/C5SM01072A
    [8]
    WAITE J H. Mussel adhesion: essential footwork[J]. Journal of Experimental Biology, 2017, 220(4): 517-530. doi: 10.1242/jeb.134056
    [9]
    LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430. doi: 10.1126/science.1147241
    [10]
    AHN B K. Perspectives on mussel-inspired wet adhesion[J]. Journal of the American Chemical Society, 2017, 139(30): 10166-10171. doi: 10.1021/jacs.6b13149
    [11]
    PRIEMEL T, PALIA G, FÖRSTE F, et al. Microfluidic-like fabrication of metal ion: cured bioadhesives by mussels[J]. Science, 2021, 374(6564): 206-211. doi: 10.1126/science.abi9702
    [12]
    GUO Q, CHEN J, WANG J, et al. Recent progress in synthesis and application of mussel-inspired adhesives[J]. Nanoscale, 2020, 12(3): 1307-1324. doi: 10.1039/C9NR09780E
    [13]
    ZHAO Y, WU Y, WANG L, et al. Bio-inspired reversible underwater adhesive[J]. Nature Communications, 2017, 8(1): 1-8. doi: 10.1038/s41467-016-0009-6
    [14]
    ARIAS S, AMINI S, KRVGER J M, et al. Implementing Zn2+ ion and pH-value control into artificial mussel glue proteins by abstracting a His-rich domain from preCollagen[J]. Soft Matter, 2021, 17(8): 2028-2033. doi: 10.1039/D0SM02118K
    [15]
    KRVGER J M, BOERNER H G. Accessing the next generation of synthetic mussel-glue polymers via mussel-inspired polymerization[J]. Angewandte Chemie International Edition, 2021, 60(12): 6408-6413. doi: 10.1002/anie.202015833
    [16]
    ZHANG C, WU B H, ZHOU Y S, et al. Mussel-inspired hydrogels: from design principles to promising applications[J]. Chemical Society Reviews, 2020, 49(11): 3605-3637. doi: 10.1039/C9CS00849G
    [17]
    丁洁莹, 薛峰, 苟晓凡. 考虑磁通流动效应的超导薄膜基底结构界面断裂行为研究[J]. 应用数学和力学, 2022, 43(6): 631-638. doi: 10.21656/1000-0887.420353

    DING Jieying, XUE Feng, GOU Xiaofan. A study on interfacial fracture behaviors of superconducting thin film/substrate structures on taking the account of effects of flux flow[J]. Applied Mathematics and Mechanics, 2022, 43(6): 631-638. (in Chinese) doi: 10.21656/1000-0887.420353
    [18]
    QURESHI D A, GOFFREDO S, KIM Y, et al. Why mussel byssal plaques are tiny yet strong in attachment[J]. Matter, 2022, 5(2): 710-724. doi: 10.1016/j.matt.2021.12.001
    [19]
    SACHS E M, HAGGERTY J S, CIMA M J, et al. Three-dimensional printing techniques: US patent 5204055[P]. 1993-04-20.
    [20]
    GROTH C, KRAVITZ N D, JONES P E, et al. Three-dimensional printing technology[J]. Journal of Clinical Orthodontics, 2014, 48(8): 475-485.
    [21]
    ZHANG J, ZHANG X. Simulating low-velocity impact induced delamination in composites by a quasi-static load model with surface-based cohesive contact[J]. Composite Structures, 2015, 125: 51-57. doi: 10.1016/j.compstruct.2015.01.050
    [22]
    BELL E C, GOSLINE J M. Mechanical design of mussel byssus: material yield enhances attachment strength[J]. Journal of Experimental Biology, 1996, 199(4): 1005-1017. doi: 10.1242/jeb.199.4.1005
    [23]
    BRAZEE S L, CARRINGTON E. Interspecific comparison of the mechanical properties of mussel byssus[J]. The Biological Bulletin, 2006, 211(3): 263-274. doi: 10.2307/4134548
    [24]
    GORB S, VARENBERG M, PERESSADKO A, et al. Biomimetic mushroom-shaped fibrillar adhesive microstructure[J]. Journal of The Royal Society Interface, 2007, 4(13): 271-275. doi: 10.1098/rsif.2006.0164
    [25]
    SPUSKANYUK A V, MCMEEKING R M, DESHPANDE V S, et al. The effect of shape on the adhesion of fibrillar surfaces[J]. Acta Biomaterialia, 2008, 4(6): 1669-1676. doi: 10.1016/j.actbio.2008.05.026
    [26]
    CARBONE G, PIERRO E, GORB S N. Origin of the superior adhesive performance of mushroom-shaped microstructured surfaces[J]. Soft Matter, 2011, 7(12): 5545-5552. doi: 10.1039/c0sm01482f
    [27]
    EVANS M A, IAN CAMPBELL R. A comparative evaluation of industrial design models produced using rapid prototyping and workshop-based fabrication techniques[J]. Rapid Prototyping Journal, 2003, 9(5): 344-351. doi: 10.1108/13552540310502248
    [28]
    MELCHELS F P, FEIJEN J, GRIJPMA D W. A review on stereolithography and its applications in biomedical engineering[J]. Biomaterials, 2010, 31(24): 6121-6130. doi: 10.1016/j.biomaterials.2010.04.050
    [29]
    韩斌慧, 郭紫淇. 冲切模橡胶卸料板设计及其3D打印复膜成型研究[J]. 合成材料老化与应用, 2022, 51(4): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HOCE202204007.htm

    HAN Binhui, GUO Ziqi. Design of punching die rubber stripper plate and research on 3D printing lamination forming[J]. Synthetic Materials Aging and Application, 2022, 51(4): 23-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HOCE202204007.htm
    [30]
    张超, 刘占芳. 低压对变温环境下高聚物黏结炸药界面损伤的抑制[J]. 应用数学和力学, 2020, 41(10): 1057-1071. doi: 10.21656/1000-0887.410092

    ZHANG Chao, LIU Zhanfang. Inhibition of low pressure on interfacial damage in polymer bonded explosive under temperature fluctuation[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1057-1071. (in Chinese) doi: 10.21656/1000-0887.410092
    [31]
    邓健, 肖鹏程, 王增贤, 等. 基于黏聚区模型的ENF试件层间裂纹扩展分析[J]. 应用数学和力学, 2022, 43(5): 515-523. doi: 10.21656/1000-0887.430082

    DENG Jian, XIAO Pengcheng, WANG Zengxian, et al. Interlaminar crack propagation analysis of ENF specimens based on the cohesive zone model[J]. Applied Mathematics and Mechanics, 2022, 43(5): 515-523. (in Chinese) doi: 10.21656/1000-0887.430082
    [32]
    WAITE J H, ANDERSEN N H, JEWHURST S, et al. Mussel adhesion: finding the tricks worth mimicking[J]. The Journal of Adhesion, 2005, 81(3/4): 297-317.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (80) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return