Volume 45 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
CUI Jing, YUE Maochang, NIU Shuxin, YANG Guangfeng. Numerical Study on Dynamic Behavior Characteristics of Water Droplets Hitting Inclined Non-Newtonian Deicing Liquid Films[J]. Applied Mathematics and Mechanics, 2024, 45(3): 337-347. doi: 10.21656/1000-0887.440183
Citation: CUI Jing, YUE Maochang, NIU Shuxin, YANG Guangfeng. Numerical Study on Dynamic Behavior Characteristics of Water Droplets Hitting Inclined Non-Newtonian Deicing Liquid Films[J]. Applied Mathematics and Mechanics, 2024, 45(3): 337-347. doi: 10.21656/1000-0887.440183

Numerical Study on Dynamic Behavior Characteristics of Water Droplets Hitting Inclined Non-Newtonian Deicing Liquid Films

doi: 10.21656/1000-0887.440183
  • Received Date: 2023-06-16
  • Rev Recd Date: 2023-11-13
  • Publish Date: 2024-03-01
  • To investigate the non-Newtonian dynamic behavior of water droplets hitting deicing fluid films under rainy weather conditions, the phase interface control equation was coupled with the component transport equation to construct a dynamic behavior model for multi-phase, multi-component and multi-system coupling actions of droplets hitting non-Newtonian liquid films. The non-steady-state evolution characteristics of water droplets hitting deicing fluid films were numerically studied, and the model was validated and modified based on experimental results. Furthermore, the influence mechanisms of shear-thinning characteristics of the deicing fluid and slope gradients on the impact process were further analyzed. The results indicate that, an asymmetric liquid crown will form after a droplet impacts the inclined liquid film. The viscosity disparity resulting from the non-Newtonian characteristics of the deicing liquid further contributes to the asymmetrical motion following the impact. During the formation of the liquid crown, the deicing liquid is taken away from the film, and the dilution effect of water reduces the film viscosity. Increasing the slope restricts the upstream range of water droplets, facilitating the growth of the downstream liquid crown and accelerating the deicing of the film. Consequently, the viscosity of the downstream liquid film significantly decreases.
  • loading
  • [1]
    陆林杰. 飞机结冰影响与除防冰技术综述[J]. 科技创新与应用, 2020(16): 136-138. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY202016057.htm

    LU Linjie. Review of aircraft icing effects and de-icing technology[J]. Science and Technology Innovation and Application, 2020(16): 136-138. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY202016057.htm
    [2]
    COSSALI G E, MARENGO M, COGHE A, et al. The role of time in single drop splash on thin film[J]. Experiments in Fluids, 2004, 36(6): 888-900. doi: 10.1007/s00348-003-0772-0
    [3]
    PAN K L, HUNG C Y. Droplet impact upon a wet surface with varied fluid and surface properties[J]. Journal of Colloid and Interface Science, 2010, 352(1): 186-193. doi: 10.1016/j.jcis.2010.08.033
    [4]
    钟凯, 秦静, 裴毅强, 等. 单液滴撞击薄液膜后冠状结构的破碎过程[J]. 中南大学学报(自然科学版), 2022, 53(4): 1497-1505. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202204033.htm

    ZHONG Kai, QIN Jing, PEI Yiqiang, et al. Breakage process of coronal structure after a single droplet hits a thin liquid film[J]. Journal of Central South University(Natural Science Edition), 2022, 53(4): 1497-1505. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202204033.htm
    [5]
    郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究[J]. 物理学报, 2010, 59(4): 2601-2609. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201004067.htm

    GUO Jiahong, DAI Shiqiang, DAI Qin. Experimental study on the process of droplet impact on liquid film[J]. Acta Physica Sinica, 2010, 59(4): 2601-2609. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201004067.htm
    [6]
    OKAWA T, KUBO K, KAWAI K, et al. Experiments on splashing thresholds during single-drop impact onto a quiescent liquid film[J]. Experimental Thermal and Fluid Science, 2021, 121: 110279. doi: 10.1016/j.expthermflusci.2020.110279
    [7]
    LU L, PEI Y, QIN J, et al. Impingement behaviour of single ethanol droplet on a liquid film of glycerol solution[J]. Fuel, 2020, 276: 117820. doi: 10.1016/j.fuel.2020.117820
    [8]
    PENG C, XU X, LIANG X. Numerical investigation on crown behavior and energy evolution of droplet impinging onto thin film[J]. International Communications in Heat and Mass Transfer, 2020, 114: 104532. doi: 10.1016/j.icheatmasstransfer.2020.104532
    [9]
    刘浩, 娄钦, 黄一帆. T型微通道内液滴在幂律流体中运动机理的格子Boltzmann方法研究[J]. 应用数学和力学, 2022, 43(3): 255-271. doi: 10.21656/1000-0887.420182

    LIU Hao, LOU Qin, HUANG Yifan. Lattice Boltzmann method for the motion mechanism of droplets in T-shaped microchannels in power-law fluids[J]. Applied Mathematics and Mechanics, 2022, 43(3): 255-271. (in Chinese)) doi: 10.21656/1000-0887.420182
    [10]
    PASSANDIDEH-FARD M, KHARMIANI S F. Simulation of a single droplet impact onto a thin liquid film using the lattice Boltzmann method[J]. Journal of Molecular Liquids, 2016, 222: 1172-1182. doi: 10.1016/j.molliq.2016.07.092
    [11]
    YUAN H, LI J, HE X, et al. Study of droplet splashing on a liquid film with a tunable surface tension pseudopotential lattice Boltzmann method[J]. AIP Advances, 2020, 10(2): 25209. doi: 10.1063/1.5141869
    [12]
    尹强, 齐晓霓, 梁伟. 二元海水液滴对心碰撞过程数值模拟[J]. 应用数学和力学, 2020, 41(3): 268-279. doi: 10.21656/1000-0887.400196

    YIN Qiang, QI Xiaoni, LIANG Wei. Numerical simulation of binary seawater droplet collision process[J]. Applied Mathematics and Mechanics, 2020, 41(3): 268-279. (in Chinese)) doi: 10.21656/1000-0887.400196
    [13]
    SANJAY V, LAKSHMAN S, CHANTELOT P, et al. Drop impact on viscous liquid films[J]. Journal of Fluid Mechanics, 2023, 958: A25. doi: 10.1017/jfm.2023.13
    [14]
    FUJISAWA N, KAWABATA H, TANAKA M. Observing the impact force and low-speed droplet behavior of wet surfaces with very-thin liquid films[J]. Experimental Thermal and Fluid Science, 2023, 144: 110836. doi: 10.1016/j.expthermflusci.2022.110836
    [15]
    马小晶, 周鑫, 吐松江·卡日, 等. 乙醇液滴撞击高温壁面蒸发过程的模拟预测研究[J]. 应用数学和力学, 2023, 44(5): 535-542. doi: 10.21656/1000-0887.430139

    MA Xiaojing, ZHOU Xin, TUSONGJIANG Kari, et al. Simulation and prediction of the evaporation process of ethanol droplets impacting high-temperature walls[J]. Applied Mathematics and Mechanics, 2023, 44(5): 535-542. (in Chinese)) doi: 10.21656/1000-0887.430139
    [16]
    HUH H K, JUNG S, SEO K W, et al. Role of polymer concentration and molecular weight on the rebounding behaviors of polymer solution droplet impacting on hydrophobic surfaces[J]. Microfluidics and Nanofluidics, 2015, 18(5/6): 1221-1232.
    [17]
    SAÏDI A, MARTIN C, MAGNIN A. Influence of yield stress on the fluid droplet impact control[J]. Journal of Non-Newtonian Fluid Mechanics, 2010, 165(11/12): 596-606.
    [18]
    BOYER F, SANDOVAL-NAVA E, SNOEIJER J H, et al. Drop impact of shear thickening liquids[J]. Physical Review Fluids, 2016, 1(1): 013901. doi: 10.1103/PhysRevFluids.1.013901
    [19]
    AN S M, LEE S Y. Maximum spreading of a shear-thinning liquid drop impacting on dry solid surfaces[J]. Experimental Thermal and Fluid Science, 2012, 38: 140-148. doi: 10.1016/j.expthermflusci.2011.12.003
    [20]
    王强, 彭华乔, 吴海涛, 等. 飞机除冰液流变特性研究[J]. 应用化工, 2016, 45(4): 732-736. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201604033.htm

    WANG Qiang, PENG Huaqiao, WU Haitao, et al. Study on rheological properties of aircraft de-icing fluid[J]. Applied Chemical Industry, 2016, 45(4): 732-736. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201604033.htm
    [21]
    张亚博, 赵芯, 于新华, 等. 飞机除冰/防冰液的流变特性研究[J]. 应用化工, 2015, 44(3): 419-422. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201503008.htm

    ZHANG Yabo, ZHAO Xin, YU Xinhua, et al. Rheological properties of aircraft de-icing/anti-icing fluids[J]. Applied Chemical Industry, 2015, 44(3): 419-422. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201503008.htm
    [22]
    沈学峰, 曹宇, 王军锋, 等. 剪切变稀液滴撞击不同浸润性壁面的数值模拟研究[J]. 物理学报, 2020, 69(6): 158-167. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB202006017.htm

    SHEN Xuefeng, CAO Yu, WANG Junfeng, et al. Numerical simulation of shear-thinned droplets impacting different wettability walls[J]. Acta Physica Sinica, 2020, 69(6): 158-167. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB202006017.htm
    [23]
    朱呈祥, 吴猛, 陈荣钱, 等. 剪切稀化非牛顿射流撞击液膜破碎直接数值模拟[J]. 航空学报, 2018, 39(5): 92-100. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201805008.htm

    ZHU Chengxiang, WU Meng, CHEN Rongqian, et al. Direct numerical simulation of shear breakup formed by two impinging jets with non-Newtonian shear thinning properties[J]. Journal of Aeronautics and Astronautics, 2018, 39(5): 92-100. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201805008.htm
    [24]
    郑所生, 黄瑶, 邹鲲, 等. 刮膜蒸发器内非牛顿流体流场特性数值模拟[J]. 物理学报, 2022, 71(5): 197-208. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB202205019.htm

    ZHENG Suosheng, HUANG Yao, ZOU Kun, et al. Numerical simulation of flow field characteristics of non-Newtonian fluid in scraper film evaporator[J]. Acta Physica Sinica, 2022, 71(5): 197-208. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB202205019.htm
    [25]
    QIU W, GUO H, ZHENG H, et al. CFD modelling to analyze the droplets deposition behavior on vibrating rice leaves[J]. Computers and Electronics in Agriculture, 2022, 201: 107330. doi: 10.1016/j.compag.2022.107330
    [26]
    梁刚涛, 郭亚丽, 沈胜强. 液滴撞击液膜的射流与水花形成机理分析[J]. 物理学报, 2013, 62(2): 415-421. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201302056.htm

    LIANG Gangtao, GUO Yali, SHEN Shengqiang. Analysis of the mechanism of jet flow and splash formation of droplets impacting liquid film[J]. Acta Physica Sinica, 2013, 62(2): 415-421. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201302056.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (67) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return