Volume 45 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
PENG Yi, ZHANG Zhengqi, LI Qiang, YANG Guangwei. A Random Forest Evaluation Model for Pavement Skid Resistance Based on Comprehensive Fractal[J]. Applied Mathematics and Mechanics, 2024, 45(4): 443-457. doi: 10.21656/1000-0887.440244
Citation: PENG Yi, ZHANG Zhengqi, LI Qiang, YANG Guangwei. A Random Forest Evaluation Model for Pavement Skid Resistance Based on Comprehensive Fractal[J]. Applied Mathematics and Mechanics, 2024, 45(4): 443-457. doi: 10.21656/1000-0887.440244

A Random Forest Evaluation Model for Pavement Skid Resistance Based on Comprehensive Fractal

doi: 10.21656/1000-0887.440244
  • Received Date: 2023-08-17
  • Rev Recd Date: 2023-12-05
  • Publish Date: 2024-04-01
  • The pavement anti-skid performance directly affects road traffic safety, and the evaluation methods based on pavement texture features currently have problems of poor interpretability and low accuracy. Herein, 185 sets of pavement texture data were collected by the portable 3D laser surface analyzer with an accuracy of 0.05 mm. The pavement friction data in the speed range of 0~80 km/h of the corresponding road section were obtained with the dynamic friction coefficient tester. The comprehensive fractal dimension index representing the complexity of the pavement texture space, the cross section, and the depth direction was constructed, and the random forest evaluation model for pavement skid resistance performances at speeds of 10 km/h and 70 km/h. The results show that, the comprehensive fractal dimension has the ability to describe the complexity of texture independently, but there is no linear relationship between it and the pavement dynamic friction coefficient; the prediction accuracy of comprehensive fractal dimensions for dynamic friction coefficients at the 70 km/h speed is 0.78, which can be used to evaluate the skid resistance of pavement under the condition of rapid sliding of tire rubber; the spatial, cross-sectional, surface, shallow, and deep profile fractal features in comprehensive fractal indicators jointly affect the pavement anti-skid performances. In the evaluation of pavement texture morphology, comprehensive analysis of texture features should be conducted from multiple spatial perspectives.
  • loading
  • [1]
    赵雪涛. 公路路面摩擦系数检测与评价方法研究[J]. 交通世界, 2019, 23(8): 56-58. doi: 10.3969/j.issn.1006-8872.2019.08.022

    ZHAO Xuetao. Research on testing and evaluation methods for friction coefficient of highway pavements[J]. Transpo World, 2019, 23(8): 56-58. (in Chinese) doi: 10.3969/j.issn.1006-8872.2019.08.022
    [2]
    PAN B H, CHAI H, LU B. Determination of the friction coefficients of icy pavements under different amounts of snowfall[J]. Journal of Visualized Experiments, 2023(191): e63769.
    [3]
    宋江春, 李明亮, 李俊, 等. 排水沥青路面抗滑性能评价指标研究[J]. 现代交通技术, 2020, 17(3): 11-16. doi: 10.3969/j.issn.1672-9889.2020.03.003

    SONG Jiangchun, LI Mingliang, LI Jun, et al. Study on evaluation index of skidding performance in porous pavement[J]. Modern Transportation Technology, 2020, 17(3): 11-16. (in Chinese) doi: 10.3969/j.issn.1672-9889.2020.03.003
    [4]
    刘俊卿, 韩晶. 基于模糊数学理论的沥青路面结构可靠度分析[J]. 应用数学和力学, 2018, 39(9): 1081-1090. doi: 10.21656/1000-0887.380278

    LIU Junqing, HAN Jing. Reliability analysis of asphalt pavement structure based on the fuzzy mathematics theory[J]. Applied Mathematics and Mechanics, 2018, 39(9): 1081-1090. (in Chinese) doi: 10.21656/1000-0887.380278
    [5]
    黄晓明, 郑彬双. 沥青路面抗滑性能研究现状与展望[J]. 中国公路学报, 2019, 32(4): 32-49. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201904004.htm

    HUANG Xiaoming, ZHENG Binshuang. Research status and progress for skid resistance performance of asphalt pavements[J]. China Journal of Highway and Transport, 2019, 32(4): 32-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201904004.htm
    [6]
    KOUCHAKI S, ROSHANI H, PROZZI J A, et al. Field investigation of relationship between pavement surface texture and friction[J]. Transportation Research Record, 2018, 2672(40): 1-13. doi: 10.1177/0361198118767415
    [7]
    UECKERMANN A, WANG D, OESER M. A contribution to non-contact skid resistance measurement[J]. International Journal of Pavement Engineering, 2014, 16(7): 646-659.
    [8]
    MEEGODA J N, GAO S Y. Evaluation of pavement skid resistance using high speed texture measurement[J]. Journal of Traffic and Transportation Engineering (English Edition), 2015, 2(6): 382-390. doi: 10.1016/j.jtte.2015.09.001
    [9]
    丁世海, 战友, 阳恩慧, 等. 基于高精度激光断面高程的沥青路面MTD测量[J]. 东南大学学报(自然科学版), 2020, 50(1): 137-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202001018.htm

    DING Shihai, ZHAN You, YANG Enhui, et al. MTD measurement of asphalt pavement based on high precision laser section elevation[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(1): 137-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202001018.htm
    [10]
    AHMAD A, OMAR S, GEORGES B S, et al. Pavement friction modeling using texture measurements and pendulum skid tester[J]. Transportation Research Record, 2018, 2672(40): 1-12. doi: 10.1177/0361198118767415
    [11]
    LIU Q F, SHALABY A. Relating concrete pavement noise and friction to three-dimensional texture parameters[J]. International Journal of Pavement Engineering, 2017, 18(5): 450-458. doi: 10.1080/10298436.2015.1095897
    [12]
    HU L Q, YUN D, LIU Z Z, et al. Effect of three-dimensional macrotexture characteristics on dynamic frictional coefficient of asphalt pavement surface[J]. Construction & Building Materials, 2016, 126: 720-729.
    [13]
    PANAGOULI O K, KOKKALIS A G. Skid resistance and fractal structure of pavement surface[J]. Chaos, Solitons & Fractals, 1998, 9(3): 493-505.
    [14]
    KOKKALIS A G, PANAGOULI O K. Fractal evaluation of pavement skid resistance variations Ⅰ: surface wetting[J]. Chaos, Solitons & Fractals, 1998, 9(11): 1875-1890.
    [15]
    UECKERMANN A, WANG D, OESER M, et al. Calculation of skid resistance from texture measurements [J]. Journal of Traffic and Transportation Engineering (English Edition), 2015, 2(1): 3-16. doi: 10.1016/j.jtte.2015.01.001
    [16]
    HARTIKAINEN L, PETRY F, WESTERMANN S. Frequency-wise correlation of the power spectral density of asphalt surface roughness and tire wet friction[J]. Wear, 317(1/2): 111-119.
    [17]
    KANAFI M M, TUONONENA J. Top topography surface roughness power spectrum for pavement friction evaluation[J]. Tribology International, 2017, 107: 240-249. doi: 10.1016/j.triboint.2016.11.038
    [18]
    KOKKALIS A G, TSOHOS G H, PANAGOULI O K. Consideration of fractals potential in pavement skid resistance evaluation[J]. Journal of Transportation Engineering, 2002, 128(6): 591-595. doi: 10.1061/(ASCE)0733-947X(2002)128:6(591)
    [19]
    VILLANI M M, SCARPAS A, BONDT A, et al. Application of fractal analysis for measuring the effects of rubber polishing on the friction of asphalt concrete mixtures[J]. Wear, 2014, 320: 179-188. doi: 10.1016/j.wear.2014.08.013
    [20]
    ZHONG K, SUN M Z, LIU Z X, et al. Research on dynamic evaluation model and early warning technology of anti-sliding risk for the airport pavement[J]. Construction and Building Materials, 2020, 239: 117820. doi: 10.1016/j.conbuildmat.2019.117820
    [21]
    WANG K F, LI Y, ZHU Y S, et al. Research on characteristics of macrotexture for colored anti-skid coating on pavement based on fractal theory[J]. Transportation Research Record, 2022, 2676(6): 129-140. doi: 10.1177/03611981211072811
    [22]
    LIU C, ZHAN Y, DENG Q S, et al. An improved differential box counting method to measure fractal dimensions for pavement surface skid resistance evaluation[J]. Measurement, 2021, 178: 109376.
    [23]
    NAYAK S R, MISHRA J, PALAI G. Analysing roughness of surface through fractal dimension: a review[J]. Image and Vision Computing, 2019, 89: 21-34.
    [24]
    ISSA M A, ISSA M A, ISLAM M S, et al. Fractal dimension: a measure of fracture roughness and toughness of concrete[J]. Engineering Fracture Mechanics, 2003, 70(1): 125-137.
    [25]
    冉茂平, 肖旺新, 周兴林, 等. 基于三维分形维数的沥青路面抗滑性能研究[J]. 公路交通科技, 2016, 33(2): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201602006.htm

    RAN Maoping, XIAO Wangxin, ZHOU Xinglin, et al. Research of skid resistance of asphalt pavement based on 3D fractal dimension[J]. Journal of Highway and Transportation Research and Development, 2016, 33(2): 28-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201602006.htm
    [26]
    童申家, 谢祥兵, 赵大勇. 沥青路面纹理分布的分形描述及抗滑性能评价[J]. 中国公路学报, 2016, 29(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201602002.htm

    TONG Shenjia, XIE Xiangbing, ZHAO Dayong. Fractal description of texture distribution and evaluation of skid-resistance performance for asphalt pavement[J]. China Journal of Highway and Transport, 2016, 29(2): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201602002.htm
    [27]
    钱振东, 薛永超, 张令刚. 沥青路面三维纹理分形维数及其抗滑性能[J]. 中南大学学报(自然科学版), 2016, 47(10): 3590-3596. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201610041.htm

    QIAN Zhendong, XUE Yongchao, ZHANG Linggang. 3-D textural fractal dimension and skid resistance of asphalt pavement[J]. Journal of Central South University (Science and Technology), 2016, 47(10): 3590-3596. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201610041.htm
    [28]
    LI L, WANG K C P, LI Q J. Geometric texture indicators for safety on AC pavements with 1 mm 3D laser texture data[J]. International Journal of Pavement Research and Technology, 2016, 9(1): 49-62.
    [29]
    DING S, WANG K C P, YANG E, et al. Influence of effective texture depth on pavement friction based on 3D texture area[J]. Construction and Building Materials, 2021, 287: 123002.
    [30]
    LIU C, ZHAN Y, DENG Q S, et al. An improved differential box counting method to measure fractal dimensions for pavement surface skid resistance evaluation[J]. Measurement, 2021, 178: 109376.
    [31]
    GUO W, CHU L, YANG L, et al. Determination of tire rubber-pavement directional coefficient of friction based on contact mechanism considerations[J]. Tribology International, 2023, 179: 1081781-10817814.
    [32]
    TAN Q L, XU X Y, LIANG H J. Physiological big data mining through machine learning and wireless sensor networks[J]. International Journal of Distributed Systems and Technologies, 2023, 14(2): 1-15.
    [33]
    KRIZHEVSKY A, SUSSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
    [34]
    彭毅, 李强, 战友, 等. 基于区域三维纹理特征的路面抗滑性能评估[J]. 东南大学学报(自然科学版), 2020, 50(4): 667-676. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202004010.htm

    PENG Yi, LI Qiang, ZHAN You, et al. Pavement skid resistance evaluation based on 3D areal texture characterization[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(4): 667-676. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202004010.htm
    [35]
    战友, 李强, 马啸天, 等. 基于宏微观纹理特征融合的路面摩擦性能预测[J]. 浙江大学学报(工学版), 2021, 55(4): 684-694. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202104010.htm

    ZHAN You, LI Qiang, MA Xiaotian, et al. Macro and micro texture based prediction of pavement surface friction[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(4): 684-694. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202104010.htm
    [36]
    陈涛, 郭卫卫, 孟令智, 等. 基于广义回归神经网络的路面摩擦系数预测模型[J]. 公路, 2014, 59(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201406001.htm

    CHEN Tao, GUO Weiwei, MENG Lingzhi, et al. Prediction model of road friction coefficient based on GRNN network[J]. Highway, 2014, 59(6): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201406001.htm
    [37]
    SERIGOS P, ANDRE D, PROZZI J. Incorporating Surface microtexture in the prediction of skid resistance of flexible pavements[J]. Transportation Research Record, 2014, 2457: 105-113.
    [38]
    PATTANAIK M L, CHOUDHARY R, KUMAR B. Prediction of frictional characteristics of bituminous mixes using group method of data handling and multigene symbolic genetic programming[J]. Engineering With Computers, 2020, 36(4): 1875-1888.
    [39]
    LIU C Q, LI J, GAO J, et al. Three dimensional texture measurement using deep learning and multi-view pavement images[J]. Measurement, 2021, 172: 108828.
    [40]
    YANG G W, LI J Q, ZHAN Y, et al. Convolutional neural network-based friction model using pavement texture data[J]. Journal of Computing in Civil Engineering, 2018, 32(6): 04018052.
    [41]
    ZHAN Y, LI J Q, YANG G W, et al. Friction-ResNets: deep residual network architecture for pavement skid resistance evaluation[J]. Journal of Transportation Engineering, 2020, 146(3): 04020027.
    [42]
    张金喜, 郭旺达, 宋波, 等. 基于随机森林的沥青路面性能预测[J]. 北京工业大学学报, 2021, 47(11): 1256-1263. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202111008.htm

    ZHANG Jinxi, GUO Wangda, SONG Bo, et al. Performance prediction of asphalt pavement based on random forest[J]. Journal of Beijing University of Technology, 2021, 47(11): 1256-1263. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202111008.htm
    [43]
    ZHAN Y, LI J Q, LIU C, et al. Effect of aggregate properties on asphalt pavement friction based on random forest analysis[J]. Construction and Building Materials, 2021, 292: 123467.
    [44]
    YANG G W, YU W Y, LI J Q. Random forest-based pavement surface friction prediction using high-resolution 3D image data[J]. Journal of Testing and Evaluation, 2019, 49(2): 20180937.
    [45]
    高伟业, 张赛, 张杰, 等. 含湿相变粗糙多孔材质的热质耦合分形研究[J]. 应用数学和力学, 2022, 43(5): 561-568. doi: 10.21656/1000-0887.420328

    GAO Weiye, ZHANG Sai, ZHANG Jie, et al. Thermo-mass coupling fractal study of wet phase-change rough porous materials[J]. Applied Mathematics and Mechanics, 2022, 43(5): 561-568. (in Chinese) doi: 10.21656/1000-0887.420328
    [46]
    张亚衡, 周宏伟, 谢和平. 粗糙表面分形维数估算的改进立方体覆盖法[J]. 岩石力学与工程学报, 2005, 24(17): 3192-3196. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200517029.htm

    ZHANG Yaheng, ZHOU Hongwei, XIE Heping. Improved cubic covering method for fractal[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3192-3196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200517029.htm
    [47]
    郑少鹏, 程志豪, 陈亮亮, 等. 路面表面构造特征指标对抗滑性能的影响[J]. 公路, 2018, 63(6): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201806007.htm

    ZHENG Shaopeng, CHENG Zhihao, CHEN Liangliang, et al. Influence of pavement surface structural characteristic index on skid resistance[J]. Highway, 2018, 63(6): 34-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201806007.htm
    [48]
    产品几何技术规范(GPS) 表面结构区域法: GB/T 33523.2—2017[S]. 2017.

    Geometrical product specifications (GPS) surface texture: areal: GB/T 33523.2—2017[S]. 2017. (in Chinese)
    [49]
    PARK J W, MOON Y S. Robust estimation of target scale by removing outlier motion vectors using MAD[J]. Electronics Letters, 2015, 51(9): 691-693.
    [50]
    BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 44-51.
    [51]
    杨彦从, 彭瑞东, 周宏伟. 三维空间数字图像的分形维数计算方法[J]. 中国矿业大学学报, 2009, 38(2): 251-258. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200902019.htm

    YANG Yancong, PENG Ruidong, ZHOU Hongwei. Computation of fractal dimension for digital image in a 3-D space[J]. Journal of China University of Mining & Technology, 2019, 38(2): 251-258. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200902019.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article Metrics

    Article views (258) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return