Volume 45 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
WANG Chunyuan, LI Hong, HE Siriguleng. A Continuous Space-Time Mixed Finite Element Method for Sine-Gordon Equations[J]. Applied Mathematics and Mechanics, 2024, 45(4): 490-501. doi: 10.21656/1000-0887.440293
Citation: WANG Chunyuan, LI Hong, HE Siriguleng. A Continuous Space-Time Mixed Finite Element Method for Sine-Gordon Equations[J]. Applied Mathematics and Mechanics, 2024, 45(4): 490-501. doi: 10.21656/1000-0887.440293

A Continuous Space-Time Mixed Finite Element Method for Sine-Gordon Equations

doi: 10.21656/1000-0887.440293
  • Received Date: 2023-09-27
  • Rev Recd Date: 2023-11-28
  • Publish Date: 2024-04-01
  • The mixed finite element method was combined with the continuous space-time finite element method to construct a continuous space-time mixed finite element scheme for sine-Gordon equations, through the introduction of independent variable p=ut to solve the equations. This scheme uses the finite element method to treat both time and space variables. The space-time mixed finite element scheme can reduce the order of the equation and lower the smoothness requirements on the finite element space. The advantages of the finite element method was utilized in both the time and the space directions, thereby to obtain high-precision space-time numerical solutions. The stability of numerical solutions was strictly proven in the theoretical analysis, and error estimates for u and p were provided. Finally, the effectiveness and feasibility of the proposed method were demonstrated through numerical examples.
  • loading
  • [1]
    JIWARI R, PANDIT S, MITTAL R C. Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method[J]. Computer Physics Communications, 2012, 183(3): 600-616. doi: 10.1016/j.cpc.2011.12.004
    [2]
    XIA Hong, TENG Fei, LUO Zhendong. A reduced-order extrapolating finite difference iterative scheme for 2D generalized nonlinear sine-Gordon equation[J]. Applied and Computational Mathematics, 2018, 7(1): 19-25. doi: 10.11648/j.acm.20180701.13
    [3]
    GUO Benyu, PASCUAL P J, RODRIGUEZ J, et al. Numerical solution of the sine-Gordon equation[J]. Applied Mathematics and Computation, 1986, 18(1): 1-14. doi: 10.1016/0096-3003(86)90025-1
    [4]
    ARGYRIS J, HAASE M, HEINRICH J C. Finite element approximation to two-dimensional sine-Gordon solitons[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 86(1): 1-26. doi: 10.1016/0045-7825(91)90136-T
    [5]
    LIU Yang, LI Hong. Numerical solutions of H1-Galerkin mixed finite element method for a damped sine-Gordon equation[J]. Applied Mathematics, 2009, 22(3): 579-588.
    [6]
    常晓慧, 李宏, 何斯日古楞. Sobolev方程的H1-Galerkin时空混合有限元分裂格式[J]. 高校应用数学学报: A辑, 2020, 35(4): 470-486. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYZ202004010.htm

    CHANG Xiaohui, LI Hong, HE Siriguleng. H1-Galerkin space time mixed finite element splitting scheme for one-dimensional Sobolev equation[J]. Applied Mathematics: A Journal of Chinese Universities, 2020, 35(4): 470-486. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXYZ202004010.htm
    [7]
    李宏, 黄春霞, 何斯日古楞, 等. Sine-Gordon方程的三次配点法[J]. 工程数学学报, 2014, 31(2): 254-266. doi: 10.3969/j.issn.1005-3085.2014.02.011

    LI Hong, HUANG Chunxia, HE Siriguleng, et al. A qualocation method for sine-Gordon equation[J]. Chinese Journal of Engineering Mathematics, 2014, 31(2): 254-266. (in Chinese) doi: 10.3969/j.issn.1005-3085.2014.02.011
    [8]
    许秋滨, 张鲁明. 二维广义非线性sine-Gordon方程的一个ADI格式[J]. 应用数学学报, 2007, 30(5): 836-846. doi: 10.3321/j.issn:0254-3079.2007.05.009

    XU Qiubin, ZHANG Luming. An ADI scheme for the generalized nonlinear sine-Gordon equation in two dimensions[J]. Acta Mathematicae Applicatae Sinica, 2007, 30(5): 836-846. (in Chinese) doi: 10.3321/j.issn:0254-3079.2007.05.009
    [9]
    LAI Huilin, MA Changfeng. An implicit scheme of lattice Boltzmann method for sine-Gordon equation[J]. Chinese Physics Letters, 2008, 25(6): 2118-2120. doi: 10.1088/0256-307X/25/6/053
    [10]
    MA Limin, WU Zongmin. A numerical method for one-dimensional nonlinear sine-Gordon equation using multiquadric quasi-interpolation[J]. Chinese Physics B, 2009, 18(8): 3099-3013. doi: 10.1088/1674-1056/18/8/001
    [11]
    HASHEMI M S. Numerical study of the one-dimensional coupled nonlinear sine-Gordon equations by a novel geometric meshless method[J]. Engineering With Computers, 2021, 37(4): 3397-3407. doi: 10.1007/s00366-020-01001-2
    [12]
    石东洋, 张斐然. Sine-Gordon方程的一类低阶非协调有限元分析[J]. 计算数学, 2011, 33(3): 289-297. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX201103008.htm

    SHI Dongyang, ZHANG Feiran. A class of low order nonconforming finite element analysis for Sine-Gordon equation[J]. Mathematica Numerica Sinica, 2011, 33(3): 289-297. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX201103008.htm
    [13]
    ADAMS R A. Sobolev Spaces[M]. New York: Academic Press, 1975.
    [14]
    罗振东. 混合有限元法基础及其应用[M]. 北京: 科学出版社, 2006.

    LUO Zhendong. Fundamentals and Applications of Mixed Finite Element Method[M]. Beijing: Science Press, 2006. (in Chinese)
    [15]
    AZIZ A K, MONK P. Continuous finite elements in space and time for the heat equation[J]. Mathematics of Computation, 1989, 52(186): 255-274. doi: 10.1090/S0025-5718-1989-0983310-2
    [16]
    LUO Zhendong, CHEN Goong. Proper Orthogonal Decomposition Methods for Partial Differential Equations[M]. San Diego: Academic Press of Elsevier, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (239) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return