Citation: | WANG Chunyuan, LI Hong, HE Siriguleng. A Continuous Space-Time Mixed Finite Element Method for Sine-Gordon Equations[J]. Applied Mathematics and Mechanics, 2024, 45(4): 490-501. doi: 10.21656/1000-0887.440293 |
[1] |
JIWARI R, PANDIT S, MITTAL R C. Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method[J]. Computer Physics Communications, 2012, 183(3): 600-616. doi: 10.1016/j.cpc.2011.12.004
|
[2] |
XIA Hong, TENG Fei, LUO Zhendong. A reduced-order extrapolating finite difference iterative scheme for 2D generalized nonlinear sine-Gordon equation[J]. Applied and Computational Mathematics, 2018, 7(1): 19-25. doi: 10.11648/j.acm.20180701.13
|
[3] |
GUO Benyu, PASCUAL P J, RODRIGUEZ J, et al. Numerical solution of the sine-Gordon equation[J]. Applied Mathematics and Computation, 1986, 18(1): 1-14. doi: 10.1016/0096-3003(86)90025-1
|
[4] |
ARGYRIS J, HAASE M, HEINRICH J C. Finite element approximation to two-dimensional sine-Gordon solitons[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 86(1): 1-26. doi: 10.1016/0045-7825(91)90136-T
|
[5] |
LIU Yang, LI Hong. Numerical solutions of H1-Galerkin mixed finite element method for a damped sine-Gordon equation[J]. Applied Mathematics, 2009, 22(3): 579-588.
|
[6] |
常晓慧, 李宏, 何斯日古楞. Sobolev方程的H1-Galerkin时空混合有限元分裂格式[J]. 高校应用数学学报: A辑, 2020, 35(4): 470-486. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYZ202004010.htm
CHANG Xiaohui, LI Hong, HE Siriguleng. H1-Galerkin space time mixed finite element splitting scheme for one-dimensional Sobolev equation[J]. Applied Mathematics: A Journal of Chinese Universities, 2020, 35(4): 470-486. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXYZ202004010.htm
|
[7] |
李宏, 黄春霞, 何斯日古楞, 等. Sine-Gordon方程的三次配点法[J]. 工程数学学报, 2014, 31(2): 254-266. doi: 10.3969/j.issn.1005-3085.2014.02.011
LI Hong, HUANG Chunxia, HE Siriguleng, et al. A qualocation method for sine-Gordon equation[J]. Chinese Journal of Engineering Mathematics, 2014, 31(2): 254-266. (in Chinese) doi: 10.3969/j.issn.1005-3085.2014.02.011
|
[8] |
许秋滨, 张鲁明. 二维广义非线性sine-Gordon方程的一个ADI格式[J]. 应用数学学报, 2007, 30(5): 836-846. doi: 10.3321/j.issn:0254-3079.2007.05.009
XU Qiubin, ZHANG Luming. An ADI scheme for the generalized nonlinear sine-Gordon equation in two dimensions[J]. Acta Mathematicae Applicatae Sinica, 2007, 30(5): 836-846. (in Chinese) doi: 10.3321/j.issn:0254-3079.2007.05.009
|
[9] |
LAI Huilin, MA Changfeng. An implicit scheme of lattice Boltzmann method for sine-Gordon equation[J]. Chinese Physics Letters, 2008, 25(6): 2118-2120. doi: 10.1088/0256-307X/25/6/053
|
[10] |
MA Limin, WU Zongmin. A numerical method for one-dimensional nonlinear sine-Gordon equation using multiquadric quasi-interpolation[J]. Chinese Physics B, 2009, 18(8): 3099-3013. doi: 10.1088/1674-1056/18/8/001
|
[11] |
HASHEMI M S. Numerical study of the one-dimensional coupled nonlinear sine-Gordon equations by a novel geometric meshless method[J]. Engineering With Computers, 2021, 37(4): 3397-3407. doi: 10.1007/s00366-020-01001-2
|
[12] |
石东洋, 张斐然. Sine-Gordon方程的一类低阶非协调有限元分析[J]. 计算数学, 2011, 33(3): 289-297. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX201103008.htm
SHI Dongyang, ZHANG Feiran. A class of low order nonconforming finite element analysis for Sine-Gordon equation[J]. Mathematica Numerica Sinica, 2011, 33(3): 289-297. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX201103008.htm
|
[13] |
ADAMS R A. Sobolev Spaces[M]. New York: Academic Press, 1975.
|
[14] |
罗振东. 混合有限元法基础及其应用[M]. 北京: 科学出版社, 2006.
LUO Zhendong. Fundamentals and Applications of Mixed Finite Element Method[M]. Beijing: Science Press, 2006. (in Chinese)
|
[15] |
AZIZ A K, MONK P. Continuous finite elements in space and time for the heat equation[J]. Mathematics of Computation, 1989, 52(186): 255-274. doi: 10.1090/S0025-5718-1989-0983310-2
|
[16] |
LUO Zhendong, CHEN Goong. Proper Orthogonal Decomposition Methods for Partial Differential Equations[M]. San Diego: Academic Press of Elsevier, 2018.
|