Citation: | LI Yong, ZHANG Yingchun, FU Yu, ZHOU Qirun, ZHAO Yufei, YANG Senjie, MA Suxia. Experimental Study on Flow and Heat Transfer Characteristics of Ambient Air in NACA0021 and NACA4822 Airfoil-Fin Channels[J]. Applied Mathematics and Mechanics, 2024, 45(5): 594-605. doi: 10.21656/1000-0887.440331 |
[1] |
BONIFACIO S, BORRECA S, RANUZZI G, et al. SPREAD: a scramjet preliminary aerothermodynamic design code[C]//Proceedings of 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Canberra, Australia, 2006: AIAA 2006-7910.
|
[2] |
YU J, SONG Q F, MA X L, et al. Study of heat transfer of composite lattice structure for active cooling used in the scramjet combustor[J]. Materials Research Innovations, 2015, 19(S5): 843-849.
|
[3] |
鲍文, 周伟星, 周有新, 等. 超燃冲压发动机再生冷却结构的强化换热优化研究[J]. 宇航学报, 2008, 29(1): 246-251. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200801044.htm
BAO Wen, ZHOU Weixing, ZHOU Youxin, et al. Active cooling design on heat transfer enhancement for scramjet engines using optimization methods[J]. Journal of Astronautics, 2008, 29(1): 246-251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200801044.htm
|
[4] |
BAIJU A P, JAYAN N, NAGESWARAN G, et al. A technology for improving regenerative cooling in advanced cryogenic rocket engines for space transportation[J]. Advances in Astronautics Science and Technology, 2021, 4: 11-18. doi: 10.1007/s42423-020-00071-0
|
[5] |
LI L H, LI X, QIN J, et al. Effect of dimple depth-diameter ratio on the flow and heat transfer characteristics of supercritical hydrocarbon fuel in regenerative cooling channel[J]. International Journal of Aerospace Engineering, 2021, 2021: 7694510.
|
[6] |
LI X, ZHANG S L, ZUO J Y, et al. Flow and heat transfer characteristics of supercritical hydrogen in unilateral heated channels with micro-ribs[J]. Applied Thermal Engineering, 2023, 221: 119900. doi: 10.1016/j.applthermaleng.2022.119900
|
[7] |
HUANG D, LI W, CHEN J X, et al. Heat transfer characteristics of aviation kerosene flowing in enhanced tubes at supercritical pressure[J]. ASME Journal of Thermal Science and Engineering Applications, 2020, 12(3): 031013.
|
[8] |
XU K K, TANG L J, MENG H. Numerical study of supercritical-pressurefluid flows and heat transfer of methane in ribbed cooling tubes[J]. International Journal of Heat and Mass Transfer, 2015, 84: 346-358. doi: 10.1016/j.ijheatmasstransfer.2015.01.041
|
[9] |
张冠文. 翼型结构在紧凑型换热装置中的应用研究[D]. 广州: 广州大学, 2022.
ZHANG Guanwen. Research on the application of airfoil structure in compact heat exchanger[D]. Guangzhou: Guangzhou University, 2022. (in Chinese)
|
[10] |
褚雯霄, 李雄辉, 马挺, 等. 不同肋片结构的印刷电路板换热器传热与阻力特性[J]. 科学通报, 2017, 62(16): 1788-1794. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201716013.htm
CHU Wenxiao, LI Xionghui, MA Ting, et al. Heat transfer and pressure drop performance of printed circuit heat exchanger with different fin structures[J]. Chinese Science Bulletin, 2017, 62(16): 1788-1794. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201716013.htm
|
[11] |
SHRIRAO P N, SAMBHE R U. Enhancement of heat transfer characteristics using aerofoil fin over square and circular fins[J]. International Journal of Recent Technology and Engineering, 2019, 8(3): 827-830.
|
[12] |
CHEN F, ZHANG L S, HUAI X L, et al. Comprehensive performance comparison of airfoil fin PCHEs with NACA 00XX series airfoil[J]. Nuclear Engineering and Design, 2017, 315: 42-50. doi: 10.1016/j.nucengdes.2017.02.014
|
[13] |
CUI X Y, GUO J F, HUAI X L, et al. Numerical study on novel airfoil fins for printed circuit heat exchanger using supercritical CO2[J]. International Journal of Heat and Mass Transfer, 2018, 121: 354-366. doi: 10.1016/j.ijheatmasstransfer.2018.01.015
|
[14] |
EDWARDS T. Liquid fuels and propellants for aerospace propulsion: 1903-2003[J]. AIAA Journal of Propulsion and Power, 2003, 19: 1089-1107.
|
[15] |
PIZZARELLI M, URBANO A, NASUTI F. Numerical analysis of deterioration in heat transfer to near-critical rocket propellants[J]. Numerical Heat Transfer (Part A): Applications, 2010, 57: 297-314.
|
[16] |
PEI X Y, HOU L Y, REN Z Y. Flow pattern effects on the oxidation deposition rate of aviation kerosene[J]. Energy and Fuels, 2015, 29: 6088-6094.
|
[17] |
康玉东, 孙冰. 再生冷却通道跨临界甲烷流动传热研究[J]. 航空动力学报, 2010, 25: 2493-2497. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201011014.htm
KANG Yudong, SUN Bing. Flow and heat transfer investigation of transcritical methane in regenerative cooling channels[J]. Journal of Aerospace Power, 2010, 25: 2493-2497. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201011014.htm
|
[18] |
WILLARD M, GIEL D, RAFFOUL C N. Scramjet/ramjet design and integration trade studies using SRHEAT[C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Denver, Colorado, USA, 2009: 2009-5184.
|
[19] |
LIU J. Investigations of heat transfer and fluid flow in the pocket region of a gas turbine engine and cooling of a turbine blade[D]. Lund: Lund University, 2019.
|
[20] |
COOPER T E, FIELD R J, MEYER J F. Liquid crystal thermography and its application to the study of convective heat transfer[J]. ASME Journal of Heat Transfer, 1975, 97(3): 442-450.
|