Zheng Xiyin, Wen Zhonglin. Minimax Theorem and Saddle Point Theorem without Linear Structure[J]. Applied Mathematics and Mechanics, 1998, 19(4): 349-354.
Citation: LI Yong, ZHANG Yingchun, FU Yu, ZHOU Qirun, ZHAO Yufei, YANG Senjie, MA Suxia. Experimental Study on Flow and Heat Transfer Characteristics of Ambient Air in NACA0021 and NACA4822 Airfoil-Fin Channels[J]. Applied Mathematics and Mechanics, 2024, 45(5): 594-605. doi: 10.21656/1000-0887.440331

Experimental Study on Flow and Heat Transfer Characteristics of Ambient Air in NACA0021 and NACA4822 Airfoil-Fin Channels

doi: 10.21656/1000-0887.440331
  • Received Date: 2023-11-06
  • Rev Recd Date: 2024-04-23
  • Publish Date: 2024-05-01
  • The active regenerative cooling technology faces the bottleneck problem of insufficient heat transfer capacity when the scramjet flies at a higher Mach number. It is proposed to strengthen the heat transfer performance of the regenerative cooling channel with airfoil-fins. To verify the enhanced heat transfer effect of the airfoil-fin channel in principle, an experimental test platform for flow and heat transfer of ambient air in NACA0021 symmetrical airfoil-fin channels and NACA4822 asymmetric airfoil-fin channels (with cross-section sizes of 50 mm × 50 mm) was built. The Nusselt number of the heated surface was obtained based on the steady-state liquid crystal technique. The results show that, the heat transfer intensities of NACA0021 symmetrical airfoil-fin channels and NACA4822 asymmetric airfoil-fin channels improve by 0.17%~17.1% and 18.4%~52.1%, respectively. Correspondingly, PECs are 1.04 and 1.24, respectively, with the volume flow of ambient air at 50 m3/h. The NACA4822 asymmetric airfoil-fin channel can enhance the heat transfer performance of the middle heating surface under the condition of a large flow rate. The flow pressure drop in the airfoil-fin channels also increases correspondingly, where the pressure drop in the NACA4822 airfoil-fin channel is the largest. The asymmetry of the airfoil-fin causes the continuous accumulation of flow turbulence intensity, resulting in a significant increase in the downstream pressure drop. The work is helpful for further research on the flow and heat transfer characteristics of supercritical fluids in airfoil-fin channels, and broadens the application temperature range of the active regenerative cooling technology for scramjets.
  • (Contributed by LI Yong, M. AMM Youth Editorial Board)
  • [1]
    BONIFACIO S, BORRECA S, RANUZZI G, et al. SPREAD: a scramjet preliminary aerothermodynamic design code[C]//Proceedings of 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Canberra, Australia, 2006: AIAA 2006-7910.
    [2]
    YU J, SONG Q F, MA X L, et al. Study of heat transfer of composite lattice structure for active cooling used in the scramjet combustor[J]. Materials Research Innovations, 2015, 19(S5): 843-849.
    [3]
    鲍文, 周伟星, 周有新, 等. 超燃冲压发动机再生冷却结构的强化换热优化研究[J]. 宇航学报, 2008, 29(1): 246-251. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200801044.htm

    BAO Wen, ZHOU Weixing, ZHOU Youxin, et al. Active cooling design on heat transfer enhancement for scramjet engines using optimization methods[J]. Journal of Astronautics, 2008, 29(1): 246-251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200801044.htm
    [4]
    BAIJU A P, JAYAN N, NAGESWARAN G, et al. A technology for improving regenerative cooling in advanced cryogenic rocket engines for space transportation[J]. Advances in Astronautics Science and Technology, 2021, 4: 11-18. doi: 10.1007/s42423-020-00071-0
    [5]
    LI L H, LI X, QIN J, et al. Effect of dimple depth-diameter ratio on the flow and heat transfer characteristics of supercritical hydrocarbon fuel in regenerative cooling channel[J]. International Journal of Aerospace Engineering, 2021, 2021: 7694510.
    [6]
    LI X, ZHANG S L, ZUO J Y, et al. Flow and heat transfer characteristics of supercritical hydrogen in unilateral heated channels with micro-ribs[J]. Applied Thermal Engineering, 2023, 221: 119900. doi: 10.1016/j.applthermaleng.2022.119900
    [7]
    HUANG D, LI W, CHEN J X, et al. Heat transfer characteristics of aviation kerosene flowing in enhanced tubes at supercritical pressure[J]. ASME Journal of Thermal Science and Engineering Applications, 2020, 12(3): 031013.
    [8]
    XU K K, TANG L J, MENG H. Numerical study of supercritical-pressurefluid flows and heat transfer of methane in ribbed cooling tubes[J]. International Journal of Heat and Mass Transfer, 2015, 84: 346-358. doi: 10.1016/j.ijheatmasstransfer.2015.01.041
    [9]
    张冠文. 翼型结构在紧凑型换热装置中的应用研究[D]. 广州: 广州大学, 2022.

    ZHANG Guanwen. Research on the application of airfoil structure in compact heat exchanger[D]. Guangzhou: Guangzhou University, 2022. (in Chinese)
    [10]
    褚雯霄, 李雄辉, 马挺, 等. 不同肋片结构的印刷电路板换热器传热与阻力特性[J]. 科学通报, 2017, 62(16): 1788-1794. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201716013.htm

    CHU Wenxiao, LI Xionghui, MA Ting, et al. Heat transfer and pressure drop performance of printed circuit heat exchanger with different fin structures[J]. Chinese Science Bulletin, 2017, 62(16): 1788-1794. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201716013.htm
    [11]
    SHRIRAO P N, SAMBHE R U. Enhancement of heat transfer characteristics using aerofoil fin over square and circular fins[J]. International Journal of Recent Technology and Engineering, 2019, 8(3): 827-830.
    [12]
    CHEN F, ZHANG L S, HUAI X L, et al. Comprehensive performance comparison of airfoil fin PCHEs with NACA 00XX series airfoil[J]. Nuclear Engineering and Design, 2017, 315: 42-50. doi: 10.1016/j.nucengdes.2017.02.014
    [13]
    CUI X Y, GUO J F, HUAI X L, et al. Numerical study on novel airfoil fins for printed circuit heat exchanger using supercritical CO2[J]. International Journal of Heat and Mass Transfer, 2018, 121: 354-366. doi: 10.1016/j.ijheatmasstransfer.2018.01.015
    [14]
    EDWARDS T. Liquid fuels and propellants for aerospace propulsion: 1903-2003[J]. AIAA Journal of Propulsion and Power, 2003, 19: 1089-1107.
    [15]
    PIZZARELLI M, URBANO A, NASUTI F. Numerical analysis of deterioration in heat transfer to near-critical rocket propellants[J]. Numerical Heat Transfer (Part A): Applications, 2010, 57: 297-314.
    [16]
    PEI X Y, HOU L Y, REN Z Y. Flow pattern effects on the oxidation deposition rate of aviation kerosene[J]. Energy and Fuels, 2015, 29: 6088-6094.
    [17]
    康玉东, 孙冰. 再生冷却通道跨临界甲烷流动传热研究[J]. 航空动力学报, 2010, 25: 2493-2497. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201011014.htm

    KANG Yudong, SUN Bing. Flow and heat transfer investigation of transcritical methane in regenerative cooling channels[J]. Journal of Aerospace Power, 2010, 25: 2493-2497. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201011014.htm
    [18]
    WILLARD M, GIEL D, RAFFOUL C N. Scramjet/ramjet design and integration trade studies using SRHEAT[C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Denver, Colorado, USA, 2009: 2009-5184.
    [19]
    LIU J. Investigations of heat transfer and fluid flow in the pocket region of a gas turbine engine and cooling of a turbine blade[D]. Lund: Lund University, 2019.
    [20]
    COOPER T E, FIELD R J, MEYER J F. Liquid crystal thermography and its application to the study of convective heat transfer[J]. ASME Journal of Heat Transfer, 1975, 97(3): 442-450.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (391) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return