Citation: | ZHANG Bo, WANG Yichen, CAI Chengyu, DING Hu, CHEN Liqun. Analysis on Dynamic Characteristics of Rotating Flow Tubes With Multi-Channel and Different Flow Directions[J]. Applied Mathematics and Mechanics, 2025, 46(4): 438-450. doi: 10.21656/1000-0887.440359 |
[1] |
HAN J C. Turbine blade cooling studies at Texas A&M University: 1980-2004[J]. Journal of Thermophysics and Heat Transfer, 2006, 20 (2): 161-187. doi: 10.2514/1.15403
|
[2] |
蒋洪德, 任静, 李雪英, 等. 重型燃气轮机现状与发展趋势[J]. 中国电机工程学报, 2014, 34 (29): 5096-5102.
JIANG Hongde, REN Jing, LI Xueying, et al. Status and development trend of the heavy duty gas turbine[J]. Proceedings of the CSEE, 2014, 34 (29): 5096-5102. (in Chinese)
|
[3] |
张效伟, 朱惠人. 大型燃气涡轮叶片冷却技术[J]. 热能动力工程, 2008, 23 (1): 1-6.
ZHANG Xiaowei, ZHU Huiren. Blade cooling technology of heavy-duty gas turbines[J]. Journal of Engineering for Thermal Energy and Power, 2008, 23 (1): 1-6. (in Chinese)
|
[4] |
CARNEGIE W. Vibrations of rotating cantilever blading: theoretical approaches to the frequency problem based on energy methods[J]. Journal of Mechanical Engineering Science, 1959, 1 : 235-240. doi: 10.1243/JMES_JOUR_1959_001_028_02
|
[5] |
LINER H S. The natural frequencies and modes of vibration of a rotating beam[J]. The Aeronautical Journal, 1954, 58 (525): 652-654.
|
[6] |
PORAT I, NIV M. Vibration of a rotating shaft by the "Timoshenko beam" theory[J]. Israel Journal of Technology, 1971, 9 (5): 535-546.
|
[7] |
MCIVER D B. Hamilton's principle for systems of changing mass[J]. Journal of Engineering Mathematics, 1973, 7 (3): 249-261. doi: 10.1007/BF01535286
|
[8] |
HODGES D H, RUTKOWSKI M J. Free-vibration analysis of rotating beams by a variable-order finite-element method[J]. AIAA Journal, 1981, 19 (11): 1459-1466. doi: 10.2514/3.60082
|
[9] |
PAÏDOUSSIS M P, ISSID N T. Dynamic stability of pipes conveying fluid[J]. Journal of Sound and Vibration, 1974, 33 (3): 267-294. doi: 10.1016/S0022-460X(74)80002-7
|
[10] |
BENJAMIN T B. Dynamics of a system of articulated pipes conveying fluid-Ⅰ: theory[J]. Proceedings of the Royal Society A, 1961, 261 (1307): 457-486.
|
[11] |
YANG J B, JIANG L J, CHEN D C. Dynamic modelling and control of a rotating Euler-Bernoulli beam[J]. Journal of Sound and Vibration, 2004, 274 (3/4/5): 863-875.
|
[12] |
PANUSSIS D A, DIMAROGONAS A D. Linear in-plane and out-of-plane lateral vibrations of a horizontally rotating fluid-tube cantilever[J]. Journal of Fluids and Structures, 2000, 14 (1): 1-24.
|
[13] |
易浩然, 周坤, 代胡亮, 等. 含集中质量悬臂输流管的稳定性与模态演化特性研究[J]. 力学学报, 2020, 52 (6): 1800-1810.
YI Haoran, ZHOU Kun, DAI Huliang, et al. Stability and mode evolution characteristics of a cantilevered fluid-conveying pipe attached with the lumped mass[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52 (6): 1800-1810. (in Chinese)
|
[14] |
赵桂欣, 孟帅, 车驰东, 等. 解释自由端含集中质量悬臂输流管固有频率计算悖论[J]. 振动与冲击, 2023, 42 (7): 18-24.
ZHAO Guixin, MENG Shuai, CHE Chidong, et al. Explanation for paradox in natural frequency calculation of cantilever fluid-conveying pipe system with an end-mass[J]. Journal of Vibration and Shock, 2023, 42 (7): 18-24. (in Chinese)
|
[15] |
徐鉴, 杨前彪. 流体诱发水平悬臂输液管的内共振和模态转换(Ⅱ)[J]. 应用数学和力学, 2006, 27 (7): 825-832. http://www.applmathmech.cn/article/id/755
XU Jian, YANG Qianbiao. Flow-induced internal resonances and mode exchange in horizontal cantilevered pipe conveying fluid(Ⅱ)[J]. Applied Mathematics and Mechanics, 2006, 27 (7): 825-832. (in Chinese) http://www.applmathmech.cn/article/id/755
|
[16] |
黄慧春, 张艳雷, 陈立群. 超临界下受迫输液管2∶1内共振的响应特性[J]. 噪声与振动控制, 2014, 34 (2): 8-11.
HUANG Huichun, ZHANG Yanlei, CHEN Liqun. Resonance analysis of a forced fluid-conveying pipe with 2∶1 internal resonances under supercritical fluid velocity[J]. Noise and Vibration Control, 2014, 34 (2): 8-11. (in Chinese)
|
[17] |
CHEN L Q, ZHANG Y L, ZHANG G C, et al. Evolution of the double-jumping in pipes conveying fluid flowing at the supercritical speed[J]. International Journal of Non-Linear Mechanics, 2014, 58 : 11-21.
|
[18] |
张国策, 丁虎, 陈立群. 复模态分析超临界轴向运动梁横向非线性振动[J]. 动力学与控制学报, 2015, 13 (4): 283-287.
ZHANG Guoce, DING Hu, CHEN Liqun. Complex modal analysis of transversally non-linear vibration for supercritically axially moving beams[J]. Journal of Dynamics and Control, 2015, 13 (4): 283-287. (in Chinese)
|
[19] |
张凯凯, 谭霞, 丁虎, 等. 超临界输流管道3∶1内共振下参激振动响应[J]. 应用数学和力学, 2018, 39 (11): 1227-1235. doi: 10.21656/1000-0887.390121
ZHANG Kaikai, TAN Xia, DING Hu, et al. Parametric vibration responses of supercritical fluid-conveying pipes in 3∶1 internal resonance[J]. Applied Mathematics and Mechanics, 2018, 39 (11): 1227-1235. (in Chinese) doi: 10.21656/1000-0887.390121
|
[20] |
LIANG F, YANG X D, QIAN Y J, et al. Transverse free vibration and stability analysis of spinning pipes conveying fluid[J]. International Journal of Mechanical Sciences, 2018, 137 : 195-204.
|
[21] |
YOON H I, SON I S. Dynamic response of rotating flexible cantilever pipe conveying fluid with tip mass[J]. International Journal of Mechanical Sciences, 2007, 49 (7): 878-887.
|
[22] |
BAHAADINI R, SAIDI A R, HOSSEINI M. Dynamic stability of fluid-conveying thin-walled rotating pipes reinforced with functionally graded carbon nanotubes[J]. Acta Mechanica, 2018, 229 (12): 5013-5029.
|
[23] |
张博, 史天姿, 张贻林, 等. 旋转输液管动力稳定性理论分析[J]. 应用数学和力学, 2022, 43 (2): 166-175.
ZHANG Bo, SHI Tianzi, ZHANG Yilin, et al. Theoretical analysis on dynamic stability of rotating pipes conveying fluid[J]. Applied Mathematics and Mechanics, 2022, 43 (2): 166-175. (in Chinese)
|
[24] |
杨佳丽, 杨虹, 李伟. 旋转Timoshenko输流管道的固有频率和稳定性分析[J]. 动力学与控制学报, 2023, 21 (2): 58-65.
YANG Jiali, YANG Hong, LI Wei. Natural frequency and stability analysis of rotating Timoshenko pipe conveying fluid[J]. Journal of Dynamics and Control, 2023, 21 (2): 58-65. (in Chinese)
|
[25] |
马永奇, 沈义俊, 尤云祥, 等. 附加重块和弹簧刚度对垂直悬臂输流管动力学稳定性的影响研究[J]. 中国造船, 2023, 64 (3): 212-222.
MA Yongqi, SHEN Yijun, YOU Yunxiang, et al. Dynamic stability analysis with additional masses and springs stiffness in vertical cantilevered pipes conveying fluid[J]. Shipbuilding of China, 2023, 64 (3): 212-222. (in Chinese)
|
[26] |
郭勇. 具有非对称横截面的悬臂输流管道的非线性振动特征[J]. 动力学与控制学报, 2023, 21 (11): 81-94.
GUO Yong. Nonlinear vibration characteristics of cantilevered fluid-conveying pipe with asymmetric cross-section[J]. Journal of Dynamics and Control, 2023, 21 (11): 81-94. (in Chinese)
|
[27] |
唐冶, 高传康, 丁千, 等. 输流管道动力学与控制的最新进展[J]. 动力学与控制学报, 2023, 21 (6): 18-30.
TANG Ye, GAO Chuankang, DING Qian, et al. Review on dynamic and control of pipes conveying fluidan[J]. Journal of Dynamics and Control, 2023, 21 (6): 18-30. (in Chinese)
|
[28] |
BALKAYA M, KAYA M O, SAGLAMER A. Free transverse vibrations of an elastically connected simply supported twin pipe system[J]. Structural Engineering and Mechanics, 2010, 34 (5): 549-561.
|
[29] |
WANG P F, ZHAO W S, JIANG J, et al. Experimental and numerical investigations of flow-induced vibration of tube arrays subjected to cross flow[J]. International Journal of Pressure Vessels and Piping, 2019, 176 : 103956.
|
[30] |
GAO P, ZHANG Y, LIU X, et al. Vibration analysis of aero parallel-pipeline systems based on a novel reduced order modeling method[J]. Journal of Mechanical Science and Technology, 2020, 34 (8): 3137-3146.
|
[31] |
GUO X M, GE H, XIAO C L, et al. Vibration transmission characteristics analysis of the parallel fluid-conveying pipes system: numerical and experimental studies[J]. Mechanical Systems and Signal Processing, 2022, 177 : 109180.
|
[32] |
GUO X M, XIAO C L, MA H, et al. Improved frequency modeling and solution for parallel liquid-filled pipes considering both fluid-structure interaction and structural coupling[J]. Applied Mathematics and Mechanics(English Edition), 2022, 43 (8): 1269-1288.
|
[33] |
张博, 郑昊楷, 孙东生, 等. 双通道旋转输流管临界流速和振动模态分析[J]. 力学学报, 2023, 55 (1): 182-191.
ZHANG Bo, ZHENG Haokai, SUN Dongsheng, et al. Theoretical analysis on the critical flow velocity and vibration mode of a twin-channel rotating pipe[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55 (1): 182-191. (in Chinese)
|