Citation: | HOU Yaxin, LIU Yang, LI Hong. A Generalized BDF2-θ Finite Element Method for Nonlinear Distributed-Order Time-Fractional Hyperbolic Wave Equations[J]. Applied Mathematics and Mechanics, 2025, 46(1): 114-128. doi: 10.21656/1000-0887.450013 |
A finite element (FE) method based on the generalized backward differentiation θ formula (generalized BDF2-θ) was presented to solve nonlinear distributed-order time-fractional hyperbolic wave equations. The temporal direction was approximated with the generalized BDF2-θ to get the FE fully discrete scheme. The proposed model with high-order temporal derivatives was transformed into a coupled system including 2 lower-order equations. The stability of the proposed FE scheme and the optimal error estimates for 2 functions u and p were discussed. Several numerical examples indicate the feasibility and efficiency of the schemes.
[2]CAO Y, YIN B L, LIU Y, et al. Crank-Nicolson WSGI difference scheme with finite element method for multi-dimensional time-fractional wave problem[J].Computational and Applied Mathematics,2018,37(4): 5126-5145.
|
TAN Z J, ZENG Y H. Temporal second-order fully discrete two-grid methods for nonlinear time-fractional variable coefficient diffusion-wave equations[J].Applied Mathematics and Computation,2024,466: 128457.
|
[3]CHEN Y P, GU Q L, LI Q F, et al. A two-grid finite element approximation for nonlinear time fractional two-term mixed sub-diffusion and diffusion wave equations[J].Journal of Computational Mathematics,2022,40(6): 936-954.
|
[4]DING H F, LI C P. A high-order algorithm for time-caputo-tempered partial differential equation with riesz derivatives in two spatial dimensions[J].Journal of Scientific Computing,2019,80(1): 81-109.
|
[5]LI L M, XU D, LUO M. Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation[J].Journal of Computational Physics,2013,255: 471-485.
|
[6]REN J C, SUN Z Z. Numerical algorithm with high spatial accuracy for the fractional diffusion-wave equation with Neumann boundary conditions[J].Journal of Scientific Computing,2013,56(2): 381-408.
|
[7]CHEN M H, DENG W H. A second-order accurate numerical method for the space-time tempered fractional diffusion-wave equation[J].Applied Mathematics Letters,2017,68: 87-93.
|
[8]WANG Z B, VONG S. Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation[J].Journal of Computational Physics,2014,277: 1-15.
|
[9]YU B, JIANG X Y, WANG C. Numerical algorithms to estimate relaxation parameters and Caputo fractional derivative for a fractional thermal wave model in spherical composite medium[J].Applied Mathematics and Computation,2016,274: 106-118.
|
[10]ZENG F H. Second-order stable finite difference schemes for the time-fractional diffusion-wave equation[J].Journal of Scientific Computing,2015,65(1): 411-430.
|
[11]DU R L, SUN Z Z, WANG H. Temporal second-order finite difference schemes for variable-order time-fractional wave equations[J].SIAM Journal on Numerical Analysis,2022,60(1): 104-132.
|
[12]CAO F F, ZHAO Y M, WANG F L, et al. Nonconforming mixed FEM analysis for multi-term time-fractional mixed sub-diffusion and diffusion-wave equation with time-space coupled derivative[J].Advances in Applied Mathematics and Mechanics,2023,15(2): 322-358.
|
[13]吴迪, 李小林. 时间分数阶扩散波方程的无单元Galerkin法分析[J]. 应用数学和力学, 2022,43(2): 215-223. (WU Di, LI Xiaolin. An element-free Galerkin method for time-fractional diffusion-wave equations[J].Applied Mathematics and Mechanics,2022,43(2): 215-223. (in Chinese))
|
[14]HEYDARI M H, HOOSHMANDASL M R, GHAINI F M M, et al. Wavelets method for the time fractional diffusion-wave equation[J].Physics Letters A,2015,379(3): 71-76.
|
[15]刘家惠, 邵林馨, 黄健飞. 带Caputo导数的变分数阶随机微分方程的Euler-Maruyama方法[J]. 应用数学和力学, 2023,44(6): 731-743. (LIU Jiahui, SHAO Linxin, HUANG Jianfei. An Euler-Maruyama method for variable fractional stochastic differential equations with caputo derivatives[J].Applied Mathematics and Mechanics,2023,44(6): 731-743. (in Chinese))
|
[16]汪精英, 翟术英. 分数阶Cahn-Hilliard方程的高效数值算法[J]. 应用数学和力学, 2021,42(8): 832-840. (WANG Jingying, ZHAI Shuying. An efficient numerical algorithm for fractional Cahn-Hilliard equations[J].Applied Mathematics and Mechanics,2021,42(8): 832-840. (in Chinese))
|
[17]CHECHKIN A V, GORENFLO R, SOKOLOV I M. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations[J].Physical Review E,2002,66(4): 046129.
|
[18]NIU Y X, LIU Y, LI H, et al. Fast high-order compact difference scheme for the nonlinear distributed-order fractional Sobolev model appearing in porous media[J].Mathematics and Computers in Simulation,2023,203: 387-407.
|
[19]WEI L L, LIU L J, SUN H X. Stability and convergence of a local discontinuous Galerkin method for the fractional diffusion equation with distributed order[J].Journal of Applied Mathematics and Computing,2019,59(1): 323-341.
|
[20]DIETHELM K, FORD N J. Numerical analysis for distributed-order differential equations[J].Journal of Computational and Applied Mathematics,2009,225(1): 96-104.
|
[21]RAN M, ZHANG C J. New compact difference scheme for solving the fourth-order time fractional sub-diffusion equation of the distributed order[J].Applied Numerical Mathematics,2018,129: 58-70.
|
[22]BU W P, XIAO A G, ZENG W. Finite difference/finite element methods for distributed-order time fractional diffusion equations[J].Journal of Scientific Computing,2017,72(1): 422-441.
|
[23]YIN B L, LIU Y, LI H, et al. Approximation methods for the distributed order calculus using the convolution quadrature[J].Discrete & Continuous Dynamical Systems B,2021,26(3): 1447-1468.
|
[24]WEN C, LIU Y, YIN B L, et al. Fast second-order time two-mesh mixed finite element method for a nonlinear distributed-order sub-diffusion model[J].Numerical Algorithms,2021,88(2): 523-553.
|
[25]ZHANG H,LIU F W, JIANG X Y, et al. A Crank-Nicolson ADI Galerkin-Legendre spectral method for the two-dimensional Riesz space distributed-order advection-diffusion equation[J].Computers & Mathematics With Applications,2018,76(10): 2460-2476.
|
[26]JIAN H Y, HUANG T Z, GU X M, et al. Fast second-order implicit difference schemes for time distributed-order andRiesz space fractional diffusion-wave equations[J].Computers & Mathematics With Applications,2021,94: 136-154.
|
[27]ATANACKOVIC T M, PILIPOVIC S, ZORICA D. Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod[J]. International Journal of Engineering Science,2011,49(2): 175-190.
|
[28]GORENFLO R, LUCHKO Y, STOJANOVIC M. Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density[J].Fractional Calculus and Applied Analysis,2013,16(2): 297-316.
|
[29]YE H, LIU F W, ANH V. Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains[J]. Journal of Computational Physics,2015,298: 652-660.
|
[30]GAO G H, SUN Z Z. Two alternating direction implicit difference schemes for solving the two-dimensional time distributed-order wave equations[J].Journal of Scientific Computing,2016,69(2): 506-531.
|
[31]TOMOVSKI , SANDEV T. Distributed-order wave equations with composite time fractional derivative[J].International Journal of Computer Mathematics,2018,95(6/7): 1100-1113.
|
[32]HENDY A S, DE STAELEN R H, PIMENOV V G. A semi-linear delayed diffusion-wave system with distributed order in time[J].Numerical Algorithms,2018,77(3): 885-903.
|
[33]DEHGHAN M, ABBASZADEH M. A Legendre spectral element method (SEM) based on the modified bases for solving neutral delay distributed-order fractional damped diffusion-wave equation[J].Mathematical Methods in the Applied Sciences,2018,41(9): 3476-3494.
|
[34]LI X L, RUI H X. A block-centered finite difference method for the distributed-order time-fractional diffusion-wave equation[J].Applied Numerical Mathematics,2018,131: 123-139.
|
[35]JANNO J. Determination of time-dependent sources and parameters of nonlocal diffusion and wave equations from final data[J].Fractional Calculus and Applied Analysis,2020,23(6): 1678-1701.
|
[36]ENGSTRM C, GIANI S, GRUBISIC L. Numerical solution of distributed-order time-fractional diffusion-wave equations using Laplace transforms[J].Journal of Computational and Applied Mathematics,2023,425: 115035.
|
[37]YIN B L, LIU Y, LI H. A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations[J].Applied Mathematics and Computation,2020,368: 124799.
|
[38]LIU Y, DU Y W, LI H, et al. Some second-orderθ schemes combined with finite element method for nonlinear fractional cable equation[J].Numerical Algorithms,2019,80(2): 533-555.
|
[39]GHURAIBAWI A A, MARASI H R, DERAKHSHAN M H, et al. An efficient numerical method for the time-fractional distributed order nonlinear Klein-Gordon equation with shifted fractional Gegenbauer multi-wavelets method[J].Physica Scripta,2023,98(8): 084001.
|
[40]WANGJ F, YIN B L, LIU Y, et al. Mixed finite element algorithm for a nonlinear time fractional wave model[J].Mathematics and Computers in Simulation,2021,188: 60-76.
|
[41]DURN R G, LOMBARDI A L. Finite element approximation of convection diffusion problems using graded meshes[J].Applied Numerical Mathematics,2006,56(10/11): 1314-1325.
|
[42]STYNES M, O’RIORDAN E, GRACIA J L. Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation[J].SIAM Journal on Numerical Analysis,2017,55(2): 1057-1079.
|
[43]CHEN H B, XU D, ZHOU J. A second-order accurate numerical method with graded meshes for an evolution equation with a weakly singular kernel[J].Journal of Computational and Applied Mathematics,2019,356: 152-163.
|
[44]YANG Z, ZENG F H. A corrected L1 method for a time-fractional subdiffusion equation[J].Journal of Scientific Computing,2023,95(3): 85.
|
[45]YIN B L, LIU Y, LI H, et al. Efficient shifted fractional trapezoidal rule for subdiffusion problems with nonsmooth solutions on uniform meshes[J].BIT Numerical Mathematics,2022,62(2): 631-666.
|