Volume 46 Issue 2
Feb.  2025
Turn off MathJax
Article Contents
QIAO Haiqing, BAO Siyuan, DENG Zichen, WANG Bo. Application of High-Order Isoparametric Elements in Free Vibration of Membrane Structures[J]. Applied Mathematics and Mechanics, 2025, 46(2): 187-198. doi: 10.21656/1000-0887.450025
Citation: QIAO Haiqing, BAO Siyuan, DENG Zichen, WANG Bo. Application of High-Order Isoparametric Elements in Free Vibration of Membrane Structures[J]. Applied Mathematics and Mechanics, 2025, 46(2): 187-198. doi: 10.21656/1000-0887.450025

Application of High-Order Isoparametric Elements in Free Vibration of Membrane Structures

doi: 10.21656/1000-0887.450025
  • Received Date: 2024-01-31
  • Rev Recd Date: 2024-04-29
  • Publish Date: 2025-02-01
  • The membrane is one of the most widely used structures in engineering. Because the theoretical solution of the structure's natural vibration characteristics is related to the trigonometric function family, the accuracy of the finite element solution is not very high by the conventional low-order element analysis. Although the h-type finite element method can improve the accuracy of the finite element solution with refined meshing of the structure, the corresponding pre-processing is relatively difficult, and the accuracy of the finite element solution may be reduced if the refined mesh is distorted. Based on the p-type finite element method, 2 quadrilateral high order isoparametric elements, i.e., isoparametric element Q16 with 16 nodes and isoparametric element Q13 with 13 nodes, were constructed to study the free vibration characteristics of membranes. Examples of membranes with different shapes and different boundary conditions show that, the proposed elements have faster convergence rates, higher computational accuracies and efficiencies than conventional low-order isoparametric elements.
  • (Contributed by DENG Zichen, M.AMM Editorial Board)
  • loading
  • [1]
    林文静, 陈树辉. 薄膜横向振动的有限元分析[J]. 应用力学学报, 2011, 28(1): 44-49.

    LIN Wenjing, CHEN Shuhui. A triangle element for finite element analysis of membranes[J]. Chinese Journal of Applied Mechanics, 2011, 28(1): 44-49. (in Chinese)
    [2]
    林文静, 陈树辉, 李森. 圆形薄膜自由振动的理论解[J]. 振动与冲击, 2009, 28(5): 84-86.

    LIN Wenjing, CHEN Shuhui, LI Sen. Analytical solution of the free vibration of circular membrane[J]. Journal of Vibration and Shock, 2009, 28(5): 84-86. (in Chinese)
    [3]
    WU J C, WANG D D, LIN Z. A meshfree higher order mass matrix formulation for structural vibration analysis[J]. International Journal of Structural Stability and Dynamics, 2018, 18(10): 1850121. doi: 10.1142/S0219455418501213
    [4]
    LIU D S, LIN I H. Vibration analysis of the multiple-hole membrane by using the coupled diem-Fe scheme[J]. Journal of Mechanics, 2016, 32(2): 163-173. doi: 10.1017/jmech.2015.60
    [5]
    袁驷, 孙浩涵. 二维自由振动问题的自适应有限元分析初探[J]. 工程力学, 2020, 37(1): 17-25.

    YUAN Si, SUN Haohan. A preliminary study on adaptive finite element analysis of two-dimensional free vibration problems[J]. Engineering Mechanics, 2020, 37(1): 17-25. (in Chinese)
    [6]
    孙浩涵, 袁驷. 以频率误差控制为目标的自由振动问题自适应有限元分析[J]. 振动与冲击, 2023, 42(4): 106-115.

    SUN Haohan, YUAN Si. Adaptive finite element analysis of free vibration problems with frequency error control alone as the objective[J]. Journal of Vibration and Shock, 2023, 42(4): 106-115. (in Chinese)
    [7]
    HOUMAT A. Free vibration analysis of arbitrarily shaped membranes using the trigonometric p-version of the finite-element method[J]. Thin-Walled Structures, 2006, 44(9): 943-951. doi: 10.1016/j.tws.2006.08.022
    [8]
    MILSTED M G, HUTCHINSON J R. Use of trigonometric terms in the finite element method with application to vibrating membranes[J]. Journal of Sound and Vibration, 1974, 32(3): 327-346. doi: 10.1016/S0022-460X(74)80089-1
    [9]
    LIU D S, CHEN Y W. Application of craig-bampton reduction technique and 2D dynamic infinite element modeling approach to membrane vibration problems[J]. Journal of Mechanics, 2019, 35(4): 513-525. doi: 10.1017/jmech.2018.45
    [10]
    FANTUZZI N, TORNABENE F, VIOLA E. Generalized differential quadrature finite element method for vibration analysis of arbitrarily shaped membranes[J]. International Journal of Mechanical Sciences, 2014, 79: 216-251. doi: 10.1016/j.ijmecsci.2013.12.008
    [11]
    BABUSKA I, SZABO B A, KATZ I N. The p-version of the finite element method[J]. SIAM Journal on Numerical Analysis, 1981, 18(3): 515-545. doi: 10.1137/0718033
    [12]
    IHLENBURG F, BABUŠKA I. Finite element solution of the Helmholtz equation with high wave number part Ⅰ: the h-version of the FEM[J]. Computers & Mathematics With Applications, 1995, 30(9): 9-37.
    [13]
    叶康生, 孟令宁. 二维泊松方程问题Lagrange型有限元p型超收敛算法[J]. 工程力学, 2022, 39(2): 23-36.

    YE Kangsheng, MENG Lingning. A p-type superconvergent recovery method for fe analysis with Lagrange elements on two-dimensional Poisson equations[J]. Engineering Mechanics, 2022, 39(2): 23-36. (in Chinese)
    [14]
    章敏, 张大卫, 张建铭. H-P型有限单元法在L型钢模型优化设计中的应用[J]. 湖北工程学院学报, 2016, 36(6): 87-92.

    ZHANG Min, ZHANG Dawei, ZHANG Jianming. Application of H-P type finite element method in L-shaped steel model optimization design[J]. Journal of Hubei Engineering University, 2016, 36(6): 87-92. (in Chinese)
    [15]
    陆洋春, 张建铭. 基于p型有限元法和围线积分法计算复合型应力强度因子[J]. 应用力学学报, 2020, 37(1): 168-175, 479-480.

    LU Yangchun, ZHANG Jianming. Extraction of stress intensity factors based on p-version finite element method and contour integral method[J]. Chinese Journal of Applied Mechanics, 2020, 37(1): 168-175, 479-480. (in Chinese)
    [16]
    陈峻, 张建铭. 基于p型有限元法的平面钢闸门局部屈曲系数计算[J]. 水电能源科学, 2020, 38(12): 173-175.

    CHEN Jun, ZHANG Jianming. Calculation of local buckling coefficient in plane steel gate based on p-version finite element method[J]. Water Resources and Power, 2020, 38(12): 173-175. (in Chinese)
    [17]
    李文武, 王为. 基于比例边界有限元的复合梁自由振动频率计算[J]. 应用数学和力学, 2024, 45(7): 936-948. doi: 10.21656/1000-0887.440208

    LI Wenwu, WANG Wei. Natural vibration frequencies of laminated composite beams based on the scaled boundary finite element method[J]. Applied Mathematics and Mechanics, 2024, 45(7): 936-948. (in Chinese) doi: 10.21656/1000-0887.440208
    [18]
    ZIENKIEWICZ O C, GAGO J P D S R, KELLY D W. The hierarchical concept in finite element analysis[J]. Computers & Structures, 1983, 16(1/2/3/4): 53-65.
    [19]
    BARDELL N S. The application of symbolic computing to the hierarchical finite element method[J]. International Journal for Numerical Methods in Engineering, 1989, 28(5): 1181-1204.
    [20]
    郭茂, 刘波. 一种基于微分求积升阶谱有限元方法的正交有理金字塔基函数[C]//北京力学会第26届学术年会论文集. 北京: 北京力学会, 2020: 3.

    GUO Mao, LIU Bo. An orthogonal rational pyramid Basis function based on differential quadrature ascending spectral finite element Method[C]//Proceedings of the 26th Annual Conference of Beijing Force Society. Beijing: Beijing Mechanical Society, 2020: 3. (in Chinese)
    [21]
    PARK J, PARK I, LEE U. Transverse vibration and waves in a membrane: frequency domain spectral element modeling and analysis[J]. Mathematical Problems in Engineering, 2014, 2014: (5): 1-14.
    [22]
    LI Z C. Error analysis of the Trefftz method for solving Laplace's eigenvalue problems[J]. Journal of Computational and Applied Mathematics, 2007, 200(1): 231-254.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(6)

    Article Metrics

    Article views (139) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return