Citation: | QIAO Haiqing, BAO Siyuan, DENG Zichen, WANG Bo. Application of High-Order Isoparametric Elements in Free Vibration of Membrane Structures[J]. Applied Mathematics and Mechanics, 2025, 46(2): 187-198. doi: 10.21656/1000-0887.450025 |
[1] |
林文静, 陈树辉. 薄膜横向振动的有限元分析[J]. 应用力学学报, 2011, 28(1): 44-49.
LIN Wenjing, CHEN Shuhui. A triangle element for finite element analysis of membranes[J]. Chinese Journal of Applied Mechanics, 2011, 28(1): 44-49. (in Chinese)
|
[2] |
林文静, 陈树辉, 李森. 圆形薄膜自由振动的理论解[J]. 振动与冲击, 2009, 28(5): 84-86.
LIN Wenjing, CHEN Shuhui, LI Sen. Analytical solution of the free vibration of circular membrane[J]. Journal of Vibration and Shock, 2009, 28(5): 84-86. (in Chinese)
|
[3] |
WU J C, WANG D D, LIN Z. A meshfree higher order mass matrix formulation for structural vibration analysis[J]. International Journal of Structural Stability and Dynamics, 2018, 18(10): 1850121. doi: 10.1142/S0219455418501213
|
[4] |
LIU D S, LIN I H. Vibration analysis of the multiple-hole membrane by using the coupled diem-Fe scheme[J]. Journal of Mechanics, 2016, 32(2): 163-173. doi: 10.1017/jmech.2015.60
|
[5] |
袁驷, 孙浩涵. 二维自由振动问题的自适应有限元分析初探[J]. 工程力学, 2020, 37(1): 17-25.
YUAN Si, SUN Haohan. A preliminary study on adaptive finite element analysis of two-dimensional free vibration problems[J]. Engineering Mechanics, 2020, 37(1): 17-25. (in Chinese)
|
[6] |
孙浩涵, 袁驷. 以频率误差控制为目标的自由振动问题自适应有限元分析[J]. 振动与冲击, 2023, 42(4): 106-115.
SUN Haohan, YUAN Si. Adaptive finite element analysis of free vibration problems with frequency error control alone as the objective[J]. Journal of Vibration and Shock, 2023, 42(4): 106-115. (in Chinese)
|
[7] |
HOUMAT A. Free vibration analysis of arbitrarily shaped membranes using the trigonometric p-version of the finite-element method[J]. Thin-Walled Structures, 2006, 44(9): 943-951. doi: 10.1016/j.tws.2006.08.022
|
[8] |
MILSTED M G, HUTCHINSON J R. Use of trigonometric terms in the finite element method with application to vibrating membranes[J]. Journal of Sound and Vibration, 1974, 32(3): 327-346. doi: 10.1016/S0022-460X(74)80089-1
|
[9] |
LIU D S, CHEN Y W. Application of craig-bampton reduction technique and 2D dynamic infinite element modeling approach to membrane vibration problems[J]. Journal of Mechanics, 2019, 35(4): 513-525. doi: 10.1017/jmech.2018.45
|
[10] |
FANTUZZI N, TORNABENE F, VIOLA E. Generalized differential quadrature finite element method for vibration analysis of arbitrarily shaped membranes[J]. International Journal of Mechanical Sciences, 2014, 79: 216-251. doi: 10.1016/j.ijmecsci.2013.12.008
|
[11] |
BABUSKA I, SZABO B A, KATZ I N. The p-version of the finite element method[J]. SIAM Journal on Numerical Analysis, 1981, 18(3): 515-545. doi: 10.1137/0718033
|
[12] |
IHLENBURG F, BABUŠKA I. Finite element solution of the Helmholtz equation with high wave number part Ⅰ: the h-version of the FEM[J]. Computers & Mathematics With Applications, 1995, 30(9): 9-37.
|
[13] |
叶康生, 孟令宁. 二维泊松方程问题Lagrange型有限元p型超收敛算法[J]. 工程力学, 2022, 39(2): 23-36.
YE Kangsheng, MENG Lingning. A p-type superconvergent recovery method for fe analysis with Lagrange elements on two-dimensional Poisson equations[J]. Engineering Mechanics, 2022, 39(2): 23-36. (in Chinese)
|
[14] |
章敏, 张大卫, 张建铭. H-P型有限单元法在L型钢模型优化设计中的应用[J]. 湖北工程学院学报, 2016, 36(6): 87-92.
ZHANG Min, ZHANG Dawei, ZHANG Jianming. Application of H-P type finite element method in L-shaped steel model optimization design[J]. Journal of Hubei Engineering University, 2016, 36(6): 87-92. (in Chinese)
|
[15] |
陆洋春, 张建铭. 基于p型有限元法和围线积分法计算复合型应力强度因子[J]. 应用力学学报, 2020, 37(1): 168-175, 479-480.
LU Yangchun, ZHANG Jianming. Extraction of stress intensity factors based on p-version finite element method and contour integral method[J]. Chinese Journal of Applied Mechanics, 2020, 37(1): 168-175, 479-480. (in Chinese)
|
[16] |
陈峻, 张建铭. 基于p型有限元法的平面钢闸门局部屈曲系数计算[J]. 水电能源科学, 2020, 38(12): 173-175.
CHEN Jun, ZHANG Jianming. Calculation of local buckling coefficient in plane steel gate based on p-version finite element method[J]. Water Resources and Power, 2020, 38(12): 173-175. (in Chinese)
|
[17] |
李文武, 王为. 基于比例边界有限元的复合梁自由振动频率计算[J]. 应用数学和力学, 2024, 45(7): 936-948. doi: 10.21656/1000-0887.440208
LI Wenwu, WANG Wei. Natural vibration frequencies of laminated composite beams based on the scaled boundary finite element method[J]. Applied Mathematics and Mechanics, 2024, 45(7): 936-948. (in Chinese) doi: 10.21656/1000-0887.440208
|
[18] |
ZIENKIEWICZ O C, GAGO J P D S R, KELLY D W. The hierarchical concept in finite element analysis[J]. Computers & Structures, 1983, 16(1/2/3/4): 53-65.
|
[19] |
BARDELL N S. The application of symbolic computing to the hierarchical finite element method[J]. International Journal for Numerical Methods in Engineering, 1989, 28(5): 1181-1204.
|
[20] |
郭茂, 刘波. 一种基于微分求积升阶谱有限元方法的正交有理金字塔基函数[C]//北京力学会第26届学术年会论文集. 北京: 北京力学会, 2020: 3.
GUO Mao, LIU Bo. An orthogonal rational pyramid Basis function based on differential quadrature ascending spectral finite element Method[C]//Proceedings of the 26th Annual Conference of Beijing Force Society. Beijing: Beijing Mechanical Society, 2020: 3. (in Chinese)
|
[21] |
PARK J, PARK I, LEE U. Transverse vibration and waves in a membrane: frequency domain spectral element modeling and analysis[J]. Mathematical Problems in Engineering, 2014, 2014: (5): 1-14.
|
[22] |
LI Z C. Error analysis of the Trefftz method for solving Laplace's eigenvalue problems[J]. Journal of Computational and Applied Mathematics, 2007, 200(1): 231-254.
|