Citation: | YANG Shuai, YUAN Si. EEP Elements for the 1D Finite Element Method and the Adaptivity Analysis[J]. Applied Mathematics and Mechanics, 2025, 46(1): 1-11. doi: 10.21656/1000-0887.450036 |
BABUSKA I, RHEINBOLDT W C. A-posteriori error estimates for the finite element method[J]. International Journal for Numerical Methods in Engineering,1978,12(10): 1597-1615.
|
[2]BABUSKA I, RHEINBOLDT W C. Adaptive approaches and reliability estimations in finite element analysis[J]. Computer Methods in Applied Mechanics and Engineering,1979,17: 519-540.
|
[3]STRANG W G, FIX G J. An Analysis of the Finite Element Method[M]. New Jersey: Prentice-Hall, 1973.
|
[4]ZIENKIEWICZ O C, ZHU J Z. The superconvergent patch recovery and a posteriori error estimates, part 1: the recovery technique[J]. International Journal for Numerical Methods in Engineering,1992,33(7): 1331-1364.
|
[5]ZIENKIEWICZ O C, ZHU J Z. The superconvergent patch recovery and a posteriori error estimates, part 2: error estimates and adaptivity[J]. International Journal for Numerical Methods in Engineering,1992,33(7): 1365-1382.
|
[6]KU J, STYNES M. A posteriori error estimates for a dual finite element method for singularly perturbed reaction-diffusion problems[J]. BIT Numerical Mathematics,2024,64(1): 7.
|
[7]BRUNNER M, INNERBERGER M, MIRAI A, et al. Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs[J]. IMA Journal of Numerical Analysis,2024,44(3): 1560-1596.
|
[8]WANG C, PING X, WANG X. An adaptive finite element method for crack propagation based on a multifunctional super singular element[J]. International Journal of Mechanical Sciences,2023,247: 108191.
|
[9]裘沙沙, 刘星泽, 宁文杰, 等. 断裂相场模型的三维自适应有限元方法[J]. 应用数学和力学, 2024,45(4): 391-399. (QIU Shasha, LIU Xingze, NING Wenjie, et al. A three-dimensional adaptive finite element method for phase-field models of fracture[J]. Applied Mathematics and Mechanics,2024,45(4): 391-399. (in Chinese))
|
[10]袁驷, 王枚. 一维有限元后处理超收敛解答计算的EEP法[J]. 工程力学, 2004,21(2): 1-9.(YUAN Si, WANG Mei. An element-energy-projection method for post-computation of super-convergent solutions in one-dimensional fem[J]. Engineering Mechanics,2004,21(2): 1-9.(in Chinese))
|
[11]袁驷, 和雪峰. 基于EEP法的一维有限元自适应求解[J]. 应用数学和力学, 2006,27(11): 1280-1291. (YUAN Si, HE Xuefeng. Self-adaptive strategy for one-dimensional finite element method based on EEP method[J]. Applied Mathematics and Mechanics,2006,27(11): 1280-1291. (in Chinese))
|
[12]YUAN S, WU Y, XING Q. Recursive super-convergence computation for multi-dimensional problemsvia one-dimensional element energy projection technique[J]. Applied Mathematics and Mechanics (English Edition),2018,39(7): 1031-1044.
|
[13]YUAN S, YUAN Q. Condensed Galerkin element of degree m for first-order initial-value problem with O(h2m+2) super-convergent nodal solutions[J]. Applied Mathematics and Mechanics (English Edition),2022,43(4): 603-614.
|
[14]JIANG K, YUAN S, XING Q. An adaptive nonlinear finite element analysis of minimal surface problem based on element energy projection technique[J]. Engineering Computations,2020,37(8): 2847-2869.
|
[15]袁驷, 王旭, 邢沁妍, 等. 具有最佳超收敛阶的EEP法计算格式: Ⅰ算法公式[J]. 工程力学, 2007,24(10): 1-5.(YUAN Si, WANG Xu, XING Qinyan, et al. A scheme with optimal order of super-convergence based on eep method: Ⅰ formulation[J]. Engineering Mechanics,2007,24(10): 1-5.(in Chinese))
|
[16]袁驷, 杨帅. 一维Galerkin有限元EEP超收敛计算的加强格式[J/OL]. 工程力学, 2023(2023-12-20)[2024-05-08]. https://kns.cnki.net/kcms/detail/11.2595.o3.20231218.1834.008.html.(YUAN Si, YANG Shuai. Enhanced form for EEP super-convergence calculation in one-dimensional Galerkin finite element method[J/OL]. Engineering Mechanics,2023(2023-12-20)[2024-05-08]. https://kns.cnki.net/kcms/detail/11.2595.o3.20231218.1834.008.html.(in Chinese))
|
[17]袁驷, 邢沁妍. 一维Ritz有限元超收敛计算的EEP法简约格式的误差估计[J]. 工程力学, 2014,31(12): 1-3.(YUAN Si, XING Qinyan. An error estimate of EEP super-convergent solutions of simplified form in one-dimensional Ritz FEM[J]. Engineering Mechanics,2014,31(12): 1-3.(in Chinese))
|
[18]黄泽敏, 袁驷. 线法二阶常微分方程组有限元分析的结点精度修正及其超收敛计算[J]. 工程力学, 2022,39(S1): 9-14.(HUANG Zemin, YUAN Si. Nodal accuracy improvement and super-convergent computation in FEM analysis of FEMOL second order ODEs[J]. Engineering Mechanics,2022,39(S1): 9-14.(in Chinese))
|
[19]张林. 固支梁有限元解的超收敛性及最大模估计[J]. 复旦学报(自然科学版), 1996,35(4): 421-429.(ZHANG Lin. Superconvergence and maximum norm estimation of FEM solution for the bending clamped beam[J]. Journal of Fudan University (Natural Science), 1996,35(4): 421-429.(in Chinese))
|
[20]赵新中, 陈传淼. 梁问题有限元逼近的新估计及超收敛[J]. 湖南师范大学自然科学学报, 2000,23(4): 6-11.(ZHAO Xinzhong, CHEN Chuanmiao. New estimates of finite element approximation to beam problem and superconvergence[J]. Journal of Natural Science of Hunan Normal University,2000,23(4): 6-11.(in Chinese))
|
[21]孙浩涵, 袁驷. 基于EEP超收敛解的自适应有限元法特性分析[J]. 工程力学, 2019,36(2): 17-25.(SUN Haohan, YUAN Si. Performance of the adaptive finite element method based on the element-energy-projection technique[J]. Engineering Mechanics,2019,36(2): 17-25.(in Chinese))
|