Volume 46 Issue 2
Feb.  2025
Turn off MathJax
Article Contents
XU Yanming, XIN Zhiqiang, HE Zheng, CAI Yu. Characteristic Analysis on Effects of High-Energy Pipe Wall Friction on Steam Jets[J]. Applied Mathematics and Mechanics, 2025, 46(2): 142-153. doi: 10.21656/1000-0887.450047
Citation: XU Yanming, XIN Zhiqiang, HE Zheng, CAI Yu. Characteristic Analysis on Effects of High-Energy Pipe Wall Friction on Steam Jets[J]. Applied Mathematics and Mechanics, 2025, 46(2): 142-153. doi: 10.21656/1000-0887.450047

Characteristic Analysis on Effects of High-Energy Pipe Wall Friction on Steam Jets

doi: 10.21656/1000-0887.450047
  • Received Date: 2024-03-26
  • Rev Recd Date: 2024-04-24
  • Publish Date: 2025-02-01
  • The steam jetting during the double-end fracture of high-energy pipelines was studied through numerical simulations. The effects of stagnation pressure and pipe wall friction on the jet cone and impingement forces were investigated, and the patterns of velocity, temperature, and pressure in the jet cone were summarized. Additionally, by comparison of the impingement forces under various inlet conditions with the results calculated based on the design criteria, the applicability of the design criteria beyond the applicable pressure range was studied. The results show that, the pressure and temperature of the steam jet decrease rapidly within a certain distance from the nozzle outlet, while the velocity rapidly increases, followed by fluctuations and changes. As the distance from the nozzle outlet increases, the velocity and temperature in the jet cone gradually decrease, and the pressure is close to the atmospheric pressure. The initial spread angle of the jet cone, the influence zone of the jet cone, and the impingement force are positively correlated with the inlet pressure, and negatively correlated with the roughness of the inner wall of the nozzle. The assumption of the initial jet cone angle in the design criteria is not universal, and the actual initial jet cone angle exceeds 45° set by the standard model at higher stagnation pressures. In the case where the whole jet impinges on the flat plate, according to the design criteria, the standard model can precisely predict the impingement force of the steam jet in the ideal pipe without wall friction. However, under the design criteria, there will be some deviation to evaluate the impingement force on a real pipe jet with wall friction, and this deviation will increase with wall friction and pressure.
  • loading
  • [1]
    郭城. 核电站主给水管道破裂事故的运行研究[J]. 核科学与工程, 2011, 31(3): 274-280.

    GUO Cheng. The operation study of main water supply pipe rupture accident at nuclear power plant[J]. Chinese Journal of Nuclear Science and Engineering, 2011, 31(3): 274-280. (in Chinese)
    [2]
    KONG R, KIM S, ISHⅡ M. Review of jet impingement in high-energy piping systems[J]. Nuclear Engineering and Design, 2020, 357: 110411. doi: 10.1016/j.nucengdes.2019.110411
    [3]
    冯志鹏, 张毅雄, 臧峰刚. 直管束流固耦合振动的数值模拟[J]. 应用数学和力学, 2013, 34(11): 1165-1172. doi: 10.3879/j.issn.1000-0887.2013.11.006

    FENG Zhipeng, ZHANG Yixiong, ZANG Fenggang. Numerical simulation of fluid-structure interaction for tube bundles[J]. Applied Mathematics and Mechanics, 2013, 34(11): 1165-1172. (in Chinese) doi: 10.3879/j.issn.1000-0887.2013.11.006
    [4]
    黄甲, 彭建, 吴高峰, 等. 核电厂高能管道破裂喷射冲击影响区域的分析[J]. 科技创新与应用, 2019, 9(31): 68-72.

    HUANG Jia, PENG Jian, WU Gaofeng, et al. Calculation and analysis of jet impingement influence zone of high energy pipe break in nuclear power station[J]. Technology Innovation and Application, 2019, 9(31): 68-72. (in Chinese)
    [5]
    MIYATAKE O, TOMIMURA T, IDE Y, et al. Effect of liquid temperature on spray flash evaporation[J]. Desalination, 1981, 37(3): 351-366. doi: 10.1016/S0011-9164(00)88658-0
    [6]
    CHEN Q, KUMJA M, LI Y, et al. Experimental and mathematical study of the spray flash evaporation phenomena[J]. Applied Thermal Engineering, 2018, 130: 598-610. doi: 10.1016/j.applthermaleng.2017.11.018
    [7]
    QUDDUS A, SHAH A, QURESHI K R, et al. Study of steam jet characteristics and regime maps for bevelled spray nozzles exhausting into quiescent water[J]. International Journal of Heat and Mass Transfer, 2022, 190: 122780. doi: 10.1016/j.ijheatmasstransfer.2022.122780
    [8]
    FU P F, ZHAO Q B, LIU JP, et al. Experimental and theoretical study on the association between entrainment vortex evolution and pressure oscillation of steam jet condensation[J]. Experimental Thermal and Fluid Science, 2023, 141: 110797. doi: 10.1016/j.expthermflusci.2022.110797
    [9]
    KITADE K, NAKATOGAWA T, NISHIKAWA H, et al. Experimental study of pipe reaction force and jet impingement load at the pipe break[C]// 5 th SMIRT Conference. Berlin, 1979.
    [10]
    MASUDA F, NAKATOGAWA T, KAWANISHI K, et al. Experimental study on an impingement high-pressure steam jet[J]. Nuclear Engineering and Design, 1982, 67(2): 273-286. doi: 10.1016/0029-5493(82)90146-7
    [11]
    FORREST C F, SHIN K S, MIDVIDY W I, et al. Measurements of impact loads and expansion of flashing water jets[J]. Nuclear Engineering and Design, 1987, 99: 53-61. doi: 10.1016/0029-5493(87)90107-5
    [12]
    YANO T, ISOZAKI T, UEDA S, et al. An experimental study of blowdown thrust and jet forces for a pipe under boiling water reactor loss-of-coolant accident conditions[J]. Nuclear Science and Engineering, 1984, 88(3): 386-395. doi: 10.13182/NSE84-A18592
    [13]
    孙得川, 胡春波, 蔡体敏. 带有横向射流的三维超声速湍流流场分析[J]. 应用数学和力学, 2002, 23(1): 99-105. http://www.applmathmech.cn/article/id/1853

    SUN Dechuan, HU Chunbo, CAI Timin. Computation of supersonic turbulent flowfield with transverse injection[J]. Applied Mathematics and Mechanics, 2002, 23(1): 99-105. (in Chinese) http://www.applmathmech.cn/article/id/1853
    [14]
    冉令可, 杨海华, 张星辰, 等. 锯齿射流与圆射流流场和远场噪声特性的对比研究[J]. 应用数学和力学, 2016, 37(12): 1255-1271. doi: 10.21656/1000-0887.370507

    RAN Lingke, YANG Haihua, ZHANG Xingchen, et al. Investigation of flow development and noise generation of free and chevron jets[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1255-1271. (in Chinese) doi: 10.21656/1000-0887.370507
    [15]
    吕元伟, 赵韫铎, 张靖周, 等. 冠齿脉冲射流冲击平直靶板对流换热实验[J]. 航空动力学报, 2023, 38(4): 787-794.

    LÜ Yuanwei, ZHAO Yunduo, ZHANG Jingzhou, et al. Experiment on convective heat transfer of pulsed chevron jet impingement on flat plate[J]. Journal of Aerospace Power, 2023, 38(4): 787-794. (in Chinese)
    [16]
    YANG G Z, JIANG G C, QIU F C, et al. Numerical simulation of jet impact process with different jet velocities in a negative pressure ambient[J]. Chemical Engineering and Processing-Process Intensification, 2023, 193: 109547.
    [17]
    KASTNER W, RIPPEL R. Jet impingement forces on structures: experiments and empirical calculation methods[J]. Nuclear Engineering and Design, 1988, 105(3): 269-284.
    [18]
    XU Q, TAKAHASHI S, TAKAMURA N, et al. Evaluation of jet impact region and fluid force generated from ruptured pipes 3: evaluation of established standards[C]//Volume 3 : Thermal-Hydraulics. Charlotte, North Carolina: American Society of Mechanical Engineers, 2016: V003T09A016.
    [19]
    MORITA R, UCHIYAMA Y, WATANABE S, et al. Evaluation of jet impact region and fluid force generated from ruptured pipes 1: numerical and experimental evaluation of affected region by steam jet[C]//Volume 3 : Thermal-Hydraulics. Charlotte, North Carolina: American Society of Mechanical Engineers, 2016: V003T09A019.
    [20]
    TAKAHASHI S, XU Q, TAKAMURA N, et al. Evaluation of jet impact region and fluid force generated from ruptured pipes 2: evaluation of fluid force using computational fluid dynamics analysis[C]//Volume 3 : Thermal-Hydraulics. Charlotte, North Carolina: American Society of Mechanical Engineers, 2016: V003T09A015.
    [21]
    彭建, 张涛, 毕勤成, 等. 高能管道断裂蒸汽喷射过程数值模拟[J]. 热科学与技术, 2022, 21(4): 383-389.

    PENG Jian, ZHANG Tao, BI Qincheng, et al. Numerical simulation of steam injection process during high-energy-pipeline fracture[J]. Journal of Thermal Science and Technology, 2022, 21(4): 383-389. (in Chinese)
    [22]
    王迎, 李勇, 贺艳秋, 等. 粗糙度与破口尺寸对管道裂纹摩擦系数影响的计算研究[J]. 装备制造技术, 2016(3): 38-41.

    WANG Ying, LI Yong, HE Yanqiu, et al. Numerical study of effect with roughness and crack opening displacement on friction coefficient of crack[J]. Equipment Manufacturing Technology, 2016(3): 38-41. (in Chinese)
    [23]
    XU P, SASMITO A P, QIU S X, et al. Heat transfer and entropy generation in air jet impingement on a model rough surface[J]. International Communications in Heat and Mass Transfer, 2016, 72: 48-56.
    [24]
    轻水堆核电厂假想管道破损事故防护设计准则: EJ/T 335—1998[S]. 1998.

    Design basis for protection of light water nuclear power plants against the effects of postulated pipe rupture: EJ/T 335—1998[S]. 1998. (in Chinese)
    [25]
    BASKAYA S, GILCHRIST A, FRASER S M. The radial spread and axial decay of temperature in turbulent condensing jets[J]. International Communications in Heat and Mass Transfer, 1997, 24(4): 465-474.
    [26]
    HEYERICHS K, POLLARD A. Heat transfer in separated and impinging turbulent flows[J]. International Journal of Heat and Mass Transfer, 1996, 39(12): 2385-2400.
    [27]
    玉城怜士, 山川胜史. 电弧喷涂的喷嘴射流研究[J]. 应用数学和力学, 2016, 37(12): 1394-1402. doi: 10.21656/1000-0887.370554

    TAMAKI R, YAMAKAWA M. Study on the nozzle jet in arc spraying[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1394-1402. (in Chinese) doi: 10.21656/1000-0887.370554
    [28]
    GUO H, NOCIVELLI L, TORELLI R, et al. Towards understanding the development and characteristics of under-expanded flash boiling jets[J]. International Journal of Multiphase Flow, 2020, 129: 103315.
    [29]
    FRANQUET E, PERRIER V, GIBOUT S, et al. Freeunderexpanded jets in a quiescent medium: a review[J]. Progress in Aerospace Sciences, 2015, 77: 25-53.
    [30]
    KONG R, KIM S, ISHⅡ M. Jet impingement in high-energy piping systems, part Ⅰ: characteristics and model evaluation[J]. Progress in Nuclear Energy, 2021, 142: 104002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (134) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return