Citation: | DAI Yiling, WANG Shaokuai, YIN Lingfeng. Evaluation of BP Neural Network Algorithms for Predicting Elastic Buckling Loads on Cold-Formed Steel Components[J]. Applied Mathematics and Mechanics, 2025, 46(2): 129-141. doi: 10.21656/1000-0887.450050 |
[1] |
VON KÁRMÁN T, SECHLER E E, DONNELL L H. The strength of thin plates in compression[J]. Journal of Fluids Engineering, 1932, 54(2): 53-56.
|
[2] |
杨梦欢. 冷弯薄壁卷边槽钢受压柱畸变屈曲性能的研究[D]. 武汉: 武汉理工大学, 2013.
YANG Menghuan. Distortional buckling behavior of cold-formed thin-wall steel lipped channel columns under compression[D]. Wuhan: Wuhan University of Technology, 2013. (in Chinese)
|
[3] |
高段. 冷弯薄壁卷边槽钢受弯构件畸变屈曲性能研究[D]. 武汉: 武汉理工大学, 2013.
GAO Duan. Study on distortional buckling of cold-formed thin-walled lipped channel steel in bending[D]. Wuhan: Wuhan University of Technology, 2013. (in Chinese)
|
[4] |
陈骥. 冷弯薄壁型钢构件的直接强度设计法[J]. 建筑钢结构进展, 2003, 5(4): 5-13.
CHEN Ji. Direct strength method for the design of cold-formed lipped channel members[J]. Progress in Steel Building Structures, 2003, 5(4): 5-13. (in Chinese)
|
[5] |
CHEUNG Y, THAM L. Finite Strip Method[M]. CRC Press, 1997.
|
[6] |
LI Z, SCHAFER B W. Buckling analysis of cold-formed steel members with general boundary conditions using CUFSM conventional and constrained finite strip methods[C]// 20 th International Specialty Conference on Cold-Formed Steel Structures. St Louis, Missouri, 2010.
|
[7] |
ÁDÁNY S, SCHAFER B W. Buckling mode decomposition of single-branched open cross-section members via finite strip method: derivation[J]. Thin-Walled Structures, 2006, 44(5): 563-584. doi: 10.1016/j.tws.2006.03.013
|
[8] |
UNGUREANU V, DUBINA D. Recent research advances on ECBL approach, part Ⅰ: plastic-elastic interactive buckling of cold-formed steel sections[J]. Thin-Walled Structures, 2004, 42(2): 177-194. doi: 10.1016/S0263-8231(03)00056-9
|
[9] |
DAVIES J M. Recent research advances in cold-formed steel structures[J]. Journal of Constructional Steel Research, 2000, 55(1/2/3): 267-288.
|
[10] |
WANG T, ZHA Z, PAN C. Prediction for elastic local buckling stress and ultimate strength of H-section beam[J]. Heliyon, 2023, 9(4): e14700. doi: 10.1016/j.heliyon.2023.e14700
|
[11] |
ZARRINGOL M, THAI H T, THAI S, et al. Application of ANN to the design of CFST columns[J]. Structures, 2020, 28: 2203-2220. doi: 10.1016/j.istruc.2020.10.048
|
[12] |
WU T Y, EL-TAWIL S, MCCORMICK J. Effect of cyclic flange local buckling on the capacity of steel members[J]. Engineering Structures, 2019, 200: 109705. doi: 10.1016/j.engstruct.2019.109705
|
[13] |
PITTON S F, RICCI S, BISAGNI C. Buckling optimization of variable stiffness cylindrical shells through artificial intelligence techniques[J]. Composite Structures, 2019, 230: 111513. doi: 10.1016/j.compstruct.2019.111513
|
[14] |
TOHIDI S, SHARIFI Y. Neural networks for inelastic distortional buckling capacity assessment of steel Ⅰ-beams[J]. Thin-Walled Structures, 2015, 94: 359-371. doi: 10.1016/j.tws.2015.04.023
|
[15] |
张广江, 杨德泽, 楚锡华. 基于人工神经网络的颗粒材料本构关系及边值问题研究[J]. 应用数学和力学, 2024, 45(2): 155-166. doi: 10.21656/1000-0887.440248
ZHANG Guangjiang, YANG Deze, CHU Xihua. Study on constitutive relations and boundary value problems of granular materials based on artificial neural networks[J]. Applied Mathematics and Mechanics, 2024, 45(2): 155-166. (in Chinese) doi: 10.21656/1000-0887.440248
|
[16] |
KAVEH A, BAKHSHPOORI T, HAMZE-ZIABARI S M. GMDH-based prediction of shear strength of FRP-RC beams with and without stirrups[J]. Computers and Concrete, 2018, 22(2): 197-207.
|
[17] |
KAVEH A, ELMIEH R, SERVATI H. Prediction of moment-rotation characteristic for semi-rigid connections using BP neural networks[C]//Computational Engineering Using Metaphors From Nature, 2001: 15-24.
|
[18] |
IRANMANESH A, KAVEH A. Structural optimization by gradient-based neural networks[J]. International Journal for Numerical Methods in Engineering, 1999, 46(2): 297-311. doi: 10.1002/(SICI)1097-0207(19990920)46:2<297::AID-NME679>3.0.CO;2-C
|
[19] |
KAVEH A, IRANMANESH A. Comparative study of back propagation and improved counter propagation neural nets in structural analysis and optimization[J]. International Journal of Space Structures, 1998, 13(4): 177-185. doi: 10.1177/026635119801300401
|
[20] |
MOJTABAEI S M, BECQUE J, HAJIRASOULIHA I, et al. Predicting the buckling behaviour of thin-walled structural elements using machine learning methods[J]. Thin-Walled Structures, 2023, 184: 110518. doi: 10.1016/j.tws.2022.110518
|
[21] |
WASZCZYSZYN Z, BARTCZAK M. Neural prediction of buckling loads of cylindrical shells with geometrical imperfections[J]. International Journal of Non-Linear Mechanics, 2002, 37(4/5): 763-775.
|
[22] |
MARKOPOULOS A P, MANOLAKOS D E, VAXEVANIDIS N M. Prediction of the collapse modes of PVC cylindrical shells under compressive axial loads using artificial neural networks[C]//The International Federation for Information Processing. Boston, MA, 2007: 251-258.
|
[23] |
PALA M. A new formulation for distortional buckling stress in cold-formed steel members[J]. Journal of Constructional Steel Research, 2006, 62(7): 716-722.
|
[24] |
PALA M, CAGLAR N. A parametric study for distortional buckling stress on cold-formed steel using a neural network[J]. Journal of Constructional Steel Research, 2007, 63(5): 686-691.
|
[25] |
GUZELBEY I H, CEVIK A, ERKLIG A. Prediction of web crippling strength of cold-formed steel sheetings using neural networks[J]. Journal of Constructional Steel Research, 2006, 62(10): 962-973.
|
[26] |
DEGTYAREV V V. Neural networks for predicting shear strength of CFS channels with slotted webs[J]. Journal of Constructional Steel Research, 2021, 177: 106443.
|
[27] |
DEGTYAREV V V, NASER M Z. Boosting machines for predicting shear strength of CFS channels with staggered web perforations[J]. Structures, 2021, 34: 3391-3403.
|
[28] |
ÁDÁNY S, SCHAFER B W. A full modal decomposition of thin-walled, single-branched open cross-section membersvia the constrained finite strip method[J]. Journal of Constructional Steel Research, 2008, 64(1): 12-29.
|
[29] |
NOORZAEI J, HAKIM S, JAAFAR M, et al. An optimal architecture of artificialneural network for predicting compressive strength of concrete[J]. Indian Concrete Journal, 2007, 81(8): 17-24.
|
[30] |
FARZINPOUR A, DEHCHESHMEH E M, BROUJERDIAN V, et al. Efficient boosting-based algorithms for shear strength prediction of squat RC walls[J]. Case Studies in Construction Materials, 2023, 18: e01928.
|
[31] |
BAI C, NGUYEN H, ASTERIS P G, et al. A refreshing view of soft computing models for predicting the deflection of reinforced concrete beams[J]. Applied Soft Computing, 2020, 97: 106831. http://www.zhangqiaokeyan.com/journal-foreign-detail/0704028534301.html
|
[32] |
HAKIM S J S, PAKNAHAD M, KAMARUDIN A F, et al. Buckling prediction in steel columns: unveiling insights with artificial neural networks[J]. International Journal of Engineering Trends and Technology, 2023, 71(9): 322-330.
|
[33] |
AHMAD A, COTSOVOS D M, LAGAROS N D. Assessing the reliability of RC code predictions through the use of artificial neural networks[C]//School of Energy, Geoscience, Infrastructure and SocietyInstitute for Infrastructure & Environment. 2016.
|
[34] |
HAGAN M T, DEMUTH H B, BEALE M. Neural Network Design[M]. PWS Publishing Co, 1997.
|
[35] |
The MathWorks[M]. Natick, MA: MATLAB, 2012.
|
[36] |
DENNIS JR J E, SCHNABEL R B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations[M]. SIAM, 1996.
|
[37] |
MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431-441.
|
[38] |
M∅LLER M F. A scaled conjugate gradient algorithm for fast supervised learning[J]. Neural Networks, 1993, 6(4): 525-533.
|
[39] |
WORKS M. Statistics and Machine Learning Toolbox User's Guide[M]. Matwork Inc, 2017.
|