Citation: | LI Min, LI Zhuoxuan, SHI Xinli, CAO Jinde. Research on Driving Factors of the RIOHTrack Rutting Prediction Model Based on Interpretable Ensemble Learning[J]. Applied Mathematics and Mechanics, 2025, 46(1): 92-104. doi: 10.21656/1000-0887.450066 |
[2]LI Z, ZHANG J, LIU T, et al. Using PSO-SVR algorithm to predict asphalt pavement performance[J]. Journal of Performance of Constructed Facilities,2021,35(6): 04021094.
|
ZHANG N, ALIPOUR A. A two-level mixed-integer programming model for bridge replacement prioritization[J]. Computer-Aided Civil and Infrastructure Engineering,2020,35(2): 116-133.
|
[3]CHOI S, DO M. Development of the road pavement deterioration model based on the deep learning method[J]. Electronics,2019,9(1): 3.
|
[4]DAMIRCHILO F, HOSSEINI A, PARAST M M, et al. Machine learning approach to predict international roughness index using long-term pavement performance data[J]. Journal of Transportation Engineering (Part B): Pavements,2021,147(4): 04021058.
|
[5]HOSSEINI S A, SMADI O. How prediction accuracy can affect the decision-making process in pavement management system[J]. Infrastructures,2021,6(2): 28.
|
[6]NASERI H, SHOKOOHI M, JAHANBAKHSH H, et al. Evolutionary and swarm intelligence algorithms on pavement maintenance and rehabilitation planning[J]. International Journal of Pavement Engineering,2022,23(13): 4649-4663.
|
[7]HOSSAIN E I N, SINGH D, ZAMAN P E M. Dynamic modulus-based field rut prediction model from an instrumented pavement section[J]. Procedia-Social and Behavioral Sciences,2013,104: 129-138.
|
[8]LI Y, LIU L, XIAO F, et al. Effective temperature for predicting permanent deformation of asphalt pavement[J]. Construction and Building Materials,2017,156: 871-879.
|
[9]张承烨, 李卓轩, 曹进德. 基于随机k-近邻集成算法的网络流量入侵检测[J]. 南通大学学报(自然科学版), 2023,22(3): 26-32. (ZHANG Chengye, LI Zhuoxuan, CAO Jinde. Network intrusion detection based on random k-nearest neighbor ensemble algorithm[J]. Journal of Nantong University (Natural Science Edition), 2023,22(3): 26-32. (in Chinese))
|
[10]MIRABDOLAZIMI S M, SHAFABAKHSH G. Rutting depth prediction of hot mix asphalts modified withforta fiber using artificial neural networks and genetic programming technique[J]. Construction and Building Materials,2017,148: 666-674.
|
[11]ZIARI H, AMINI A, GOLI A, et al. Predicting rutting performance of carbon nano tube (CNT) asphalt binders using regression models and neural networks[J]. Construction and Building Materials,2018,160: 415-426.
|
[12]SHAN A, HAFEEZ I, HUSSAN S, et al. Predicting the laboratory rutting response of asphalt mixtures using different neural network algorithms[J]. International Journal of Pavement Engineering,2022,23(6): 1948-1956.
|
[13]QADIR A, GAZDER U, CHOUDHARY K U N. Artificial neural network models for performance design of asphalt pavements reinforced with geosynthetics[J]. Transportation Research Record: Journal of the Transportation Research Board,2020,2674(8): 319-326.
|
[14]WANG S C. Interdisciplinary Computing in Java Programming[M]. Boston, MA: Springer, 2003.
|
[15]MISHRA M, SRIVASTAVA M. A view of artificial neural network[C]//2014 International Conference on Advances in Engineering & Technology Research (ICAETR-2014). Unnao, India: IEEE, 2014: 1-3.
|
[16]MAIND S B, WANKAR P. Research paper on basic of artificial neural network[J]. International Journal on Recent and Innovation Trends in Computing and Communication,2014,2(1): 96-100.
|
[17]SHANMUGANATHAN S A S. Artificial Neural Network Modelling[M]. Cham: Springer, 2016.
|
[18]SIMPSON A L, DALEIDEN J F, HADLEY W O. Rutting analysis from a different perspective[J]. Transportation Research Record,1995,1473: 9-16.
|
[19]SHAFABAKHSH G H, ANI O J, TALEBSAFA M. Artificial neural network modeling (ANN) for predicting rutting performance of nano-modified hot-mix asphalt mixtures containing steel slag aggregates[J]. Construction and Building Materials,2015,85: 136-143.
|
[20]ABDELAZIZ N, ABD EL-HAKIM R T, EL-BADAWY S M, et al. International roughness index prediction model for flexible pavements[J]. International Journal of Pavement Engineering,2020,21(1): 88-99.
|
[21]BARUA L, ZOU B, NORUZOLIAEE M, et al. A gradient boosting approach to understanding airport runway and taxiway pavement deterioration[J]. International Journal of Pavement Engineering,2021,22(13): 1673-1687.
|
[22]王旭东. 从试验环道看长寿命路面的“中国制造”[J]. 中国公路, 2020(14): 30-32. (WANG Xudong. Viewing the “Made in China” of long life road surface from the experimental ring road [J]. China Highway,2020(14): 30-32. (in Chinese))
|
[23]张蕾, 周兴业, 王旭东. 基于RIOHTrack足尺加速加载试验的长寿命沥青路面行为研究进展[J]. 科学通报, 2020,65(30): 3247-3258. (ZHANG Lei, ZHOU Xingye, WANG Xudong. Research progress of long-life asphalt pavement behavior based on the RIOHTrack full-scale accelerated loading test[J]. Chinese Science Bulletin,2020,65(30): 3247-3258. (in Chinese))
|
[24]LI Z, SHI X, CAO J, et al. CPSO-XGBoost segmented regression model for asphalt pavement deflection basin area prediction[J]. Science China Technological Sciences,2022,65(7): 1470-1481.
|
[25]ZEIADA W, HAMAD K, OMAR M, et al. Investigation and modelling of asphalt pavement performance in cold regions[J]. International Journal of Pavement Engineering,2019,20(8): 986-997.
|
[26]BOMMERT A, SUN X, BISCHL B, et al. Benchmark for filter methods for feature selection in high-dimensional classification data[J]. Computational Statistics & Data Analysis,2020,143: 106839.
|
[27]NASERI H, WAYGOOD E O D, WANG B B, et al. How to predict climate change stage of change accurately: proposing a new feature selection technique[C]//Transportation Research Board 101st Annual Meeting. Washington DC, 2022.
|
[28]LIU L, ZHOU J, AN X, et al. Using fuzzy theory and information entropy for water quality assessment in Three Gorges region, China[J]. Expert Systems With Applications,2010,37(3): 2517-2521.
|
[29]ZOU Z H, YUN Y, SUN J N. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment[J]. Journal of Environmental Sciences,2006,18(5): 1020-1023.
|
[30]KIREMIRE A R. The application of the Pareto principle in software engineering[Z/OL]. 2021[2024-11-28]. https://studylib.net/doc/8372157/the-application-of-the-pareto-principle-in-software.
|
[31]REFAEILZADEH P, TANG L, LIU H. Cross-validation[C]//Encyclopedia of Database Systems. Boston, MA: Springer, 2009: 532-538.
|
[32]NGARAMBE J, IRAKOZE A, YUN G Y, et al. Comparative performance of machine learning algorithms in the prediction of indoor daylight illuminances[J]. Sustainability,2020,12(11): 4471.
|
[33]LUNDBERG S M, LEE S I. A unified approach to interpreting model predictions[C]//31st Conference on Neural Information Processing Systems. Long Beach, CA, 2017.
|
[34]BREIMAN L. Random forests[J]. Machine Learning,2001,45: 5-32.
|
[35]CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785-794.
|
[36]PROKHORENKOVA L, GUSEV G, VOROBEV A, et al. CatBoost: unbiased boosting with categorical features[C]//Advances in Neural Information Processing Systems 31. 2018: 6138-6148.
|
[37]KE G L, MENG Q, FINLEY T, et al. LightGBM: a highly efficient gradient boosting decision tree[C]//Advances in Neural Information Processing Systems 30. 2017: 3147-3155.
|
[38]ZHOU Z H, FENG J. Deep forest[J]. National Science Review,2019,6(1): 74-86.
|
[39]PETERSON L. K-nearest neighbor[J]. Scholarpedia,2009,4(2): 1883.
|
[40]HEARST M A, DUMAIS S T, OSUNA E, et al. Support vector machines[J]. IEEE Intelligent Systems and Their Applications,1998,13(4): 18-28.
|
[41]MYLES A J, FEUDALE R N, LIU Y, et al. An introduction to decision tree modeling[J]. Journal of Chemometrics,2004,18(6): 275-285.
|
[42]GARDNER M W, DORLING S R. Artificial neural networks (the multilayer perceptron): a review of applications in the atmospheric sciences[J]. Atmospheric Environment,1998,32(14/15): 2627-2636.
|
[43]李卓轩, 林凯迪, 郭建华, 等. 基于车联网数据的运输车辆安全评价模型[J]. 南通大学学报(自然科学版), 2020,19(1): 26-32. (LI Zhuoxuan, LIN Kaidi, GUO Jianhua, et al. Transportation vehicle safety evaluation model based on vehicle network data[J]. Journal of Nantong University (Natural Science Edition), 2020,19(1): 26-32. (in Chinese))
|