Volume 46 Issue 1
Jan.  2025
Turn off MathJax
Article Contents
PAN Yaozong, ZHAO Yan. A Structural Dynamics Parameter Identification Method Based on the Modal Space Time-Domain Precise Integration[J]. Applied Mathematics and Mechanics, 2025, 46(1): 29-39. doi: 10.21656/1000-0887.450071
Citation: PAN Yaozong, ZHAO Yan. A Structural Dynamics Parameter Identification Method Based on the Modal Space Time-Domain Precise Integration[J]. Applied Mathematics and Mechanics, 2025, 46(1): 29-39. doi: 10.21656/1000-0887.450071

A Structural Dynamics Parameter Identification Method Based on the Modal Space Time-Domain Precise Integration

doi: 10.21656/1000-0887.450071
Funds:

The National Science Foundation of China(11772084;U1906233)

  • Received Date: 2024-03-20
  • Rev Recd Date: 2024-05-04
  • Based on the modal space time-domain precise integration, a dynamic parameter identification method was proposed. Firstly, an identification model was constructed based on the time-domain measurement signals and the theoretical prediction model with the time-domain precise integration method in the modal space. Secondly, the quadratic function of the unconstrained vector was derived through the Kronecker product of matrices, and the mathematical expressions of the mode shapes were analyzed and given. Finally, through mathematical transformations of the identification optimization problem, only the dynamics spectrum parameters (frequencies and damping ratios) need be identified, to greatly reduce the dimensionality of the identification parameters. In numerical examples, the dynamic parameter identification for the spring-mass system and the high-speed pantograph system were studied. The identified natural frequencies and damping ratios have errors less than 8% compared to the theoretical values. The cosine of the angle between the identified and the theoretical mode shapes is close to 1, which verifies the accuracy of the identification results. The proposed method can effectively achieve the separation of dynamic spectral parameters (frequencies, damping ratios) and spatial parameters (modal shapes), and has better solving efficiency and application prospects.
  • loading
  • [2]李帅, 向致谦, 潘坚文, 等. 高拱坝模态参数识别综述[J]. 地震工程与工程振动, 2023,43(2): 1-12.(LI Shuai, XIANG Zhiqian, PAN Jianwen, et al. Review on modal parameters identification for high arch dams[J].Earthquake Engineering and Engineering Dynamics,2023,43(2): 1-12.(in Chinese))
    唐颖卓, 卢光宇, 蔡国平. 基于绳索作动器的大型太空望远镜桁架结构的振动主动控制[J]. 应用数学和力学, 2022,43(2): 123-131.

    (TANG Yingzhuo, LU Guangyu, CAI Guoping. Active vibration control of truss structures for large space telescopes based on cable actuators[J].Applied Mathematics and Mechanics,2022,43(2): 123-131.(in Chinese))
    [3]姚志远, 汪凤泉, 赵淳生. 环境自然激励下一种结构损伤在线识别方法[J]. 应用数学和力学, 2005,26(2): 246-252.(YAO Zhiyuan, WANG Fengquan, ZHAO Chunsheng. A method of online damage identification for structures based on ambient vibration[J].Applied Mathematics and Mechanics,2005,26(2): 246-252.(in Chinese))
    [4]REYNDERS E. System identification methods for (operational) modal analysis: review and comparison[J].Archives of Computational Methods in Engineering,2012,19(1): 51-124.
    [5]SEYBERT A F. Estimation of damping from response spectra[J].Journal of Sound and Vibration,1981,75(2): 199-206.
    [6]RICHARDSON M H, FORMENTI D L. Global curve fitting of frequency response measurements using the rational fraction polynomial method[C]//Proceeding of 〖STBX〗3rd IMAC.Orlando, 1985: 390-397.
    [7]PEETERS B, VAN DER AUWERAER H, GUILLAUME P, et al. The PolyMAX frequency-domain method: a new standard for modal parameter estimation?[J].Shock and Vibration,2004,11(3/4): 395-409.
    [8]CUNHA , CAETANO E. Experimental modal analysis of civil engineering structures[J].Sound and Vibration,2006,6(40): 12-20.
    [9]BROWN D L, ALLEMANG R J, ZIMMERMAN R, et al. Parameter estimation techniques for modal analysis[J].SAE Transactions,1979,88: 828-846.
    [10]VOLD H, KUNDRAT J, ROCKLIN G T, et al. A multi-input modal estimation algorithm for mini-computers[J].SAE Transactions,1982,91: 815-821.
    [11]IBRAHIM S R, MIKULCIK E C. A method for the direct identification of vibration parameters from the free response[J].The Shock and Vibration Bulletin,1977,47(4): 183-198.
    [12]JUANG J N, PAPPA R S. An eigensystem realization algorithm for modal parameter identification and model reduction[J].Journal of Guidance, Control, and Dynamics,1985,8(5): 620-627.
    [13]XU X, ZHANG H, WEI X, et al. Experimental study on natural vibration characteristics of double-strip high-speed pantograph head[J].Experimental Mechanics,2023,63(6): 995-1001.
    [14]KASAI T, YAMAGUCHI I, IGAWA H, et al. On-orbit system identification experiments of the engineering test satellite-Ⅷ[J].Transactions of the Japan Society for Aeronautical and Space Sciences,Space Technology Japan,2009,7(ists26): 79-84.
    [15]王亮, 蔡毅鹏, 南宫自军. 高速飞行器飞行模态辨识技术及验证研究[J]. 强度与环境, 2022,49(4): 23-28.(WANG Liang, CAI Yipeng, NANGONG Zijun. Application and verification of the high speed aircraft’s operational mode identification[J].Structure & Environment Engineering,2022,49(4): 23-28.(in Chinese))
    [16]YANG J H, LAM H F. An innovative Bayesian system identification method using autoregressive model[J].Mechanical Systems and Signal Processing,2019,133: 106289.
    [17]许向红, 罗羿, 张颢辰, 等. 基于模态实验的单滑板受电弓全柔模型修正方法[J]. 力学学报, 2023,55(8): 1753-1760.(XU Xianghong, LUO Yi, ZHANG Haochen, et al. Full flexible model updating of single-strip pantograph based on modal test[J].Chinese Journal of Theoretical and Applied Mechanics,2023,55(8): 1753-1760.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (15) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return