Citation: | WANG Qinze, HAN Bin, ZHENG Peiyuan, LIU Zhipeng, ZHANG Qi. Research on Mechanical Properties of Negative Stiffness Torsion Metastructures[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1082-1095. doi: 10.21656/1000-0887.450082 |
[1] |
DARWISH Y, ELGAWADY M A. Numerical and experimental investigation of negative stiffness beams and honeycomb structures[J]. Engineering Structures, 2024, 301: 117163. doi: 10.1016/j.engstruct.2023.117163
|
[2] |
LI X Y, WANG J X, CHAI Y J, et al. A novel frog-like meta-structure with linkage mechanism for low-frequency vibration isolation[J]. Journal of Physics D: Applied Physics, 2024, 57: 135304. doi: 10.1088/1361-6463/ad1851
|
[3] |
杨航, 马力. 多材料点阵结构的热可编程力学行为[J]. 应用数学和力学, 2022, 43(5): 534-552.
YANG Hang, MA Li. Multimaterial lattice structures with thermally programmable mechanical behaviors[J]. Applied Mathematics and Mechanics, 2022, 43(5): 534-522. (in Chinese)
|
[4] |
王竞哲, 陈保才, 朱绍伟, 等. 圆锥形负刚度超材料吸能性能研究[J]. 应用数学和力学, 2023, 44(10): 1172-1179.
WANG Jingzhe, CHEN Baocai, ZHU Shaowei, et al. Study on energy absorption performances of conical negative stiffness metamaterials[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1172-1179. (in Chinese)
|
[5] |
VALENCIA C, RESTREPO D, MANKAME N D, et al. Computational characterization of the wave propagation behavior of multi-stable periodic cellular materials[J]. Extreme Mechanics Letters, 2019, 33(C): 100565.
|
[6] |
GOLDSBERRY B M, HABERMAN M R. Negative stiffness honeycombs as tunable elastic metamaterials[J]. Journal of Applied Physics, 2018, 123(9): 091711. doi: 10.1063/1.5011400
|
[7] |
FRAZIER M J. Multi-stable acoustic metamaterials with re-configurable mass distribution[J]. Journal of Applied Physics, 2022, 131(16): 165105. doi: 10.1063/5.0086214
|
[8] |
HU N, LI B, BAI R Y, et al. A torsion-bending antagonistic bistable actuator enables untethered crawling and swimming of miniature robots[J]. Research, 2023, 6: 0116. doi: 10.34133/research.0116
|
[9] |
MUNGEKAR M, MA L X, YAN W Z, et al. Design of bistable soft deployable structures via a kirigami-inspired planar fabrication approach[J]. Advanced Materials Technologies, 2023, 8(16): 00088.
|
[10] |
CHI Y D, HONG Y Y, ZHAO Y, et al. Snapping for high-speed and high-efficient butterfly stroke-like soft swimmer[J]. Science Advances, 2022, 8(46): eadd3788. doi: 10.1126/sciadv.add3788
|
[11] |
WANG J, ZHAO T H, FAN Y Y, et al. Leveraging bioinspired structural constraints for tunable and programmable snapping dynamics in high-speed soft actuators[J]. Advanced Functional Materials, 2022, 33(2): 09798.
|
[12] |
ZHOU S X, CAO J Y, ERTURK A, et al. Enhanced broadband piezoelectric energy harvesting using rotatable magnets[J]. Applied Physics Letters, 2013, 102(17): 173901. doi: 10.1063/1.4803445
|
[13] |
ZHOU S X, CAO J Y, INMAN D J, et al. Broadband tristable energy harvester: modeling and experiment verification[J]. Applied Energy, 2014, 133: 33-39. doi: 10.1016/j.apenergy.2014.07.077
|
[14] |
BARTON DAW, BURROW S G, CLARE L R. Energy harvesting from vibrations with a nonlinear oscillator[J]. Journal of Vibration and Acoustics, 2010, 132(2): 427-436.
|
[15] |
SHAN S C, KANG S H, RANEY J R, et al. Multistable architected materials for trapping elastic strain energy[J]. Advanced Materials, 2015, 27(29): 4296-4301. doi: 10.1002/adma.201501708
|
[16] |
FRENZEL T, FINDISEN C, KADIC M, et al. Tailoredbuckling microlattices as reusable light-weight shock absorbers[J]. Advanced Materials, 2016, 28(28): 5865-5870. doi: 10.1002/adma.201600610
|
[17] |
WANG B, TAN X J, ZHU S W, et al. Cushion performance of cylindrical negative stiffness structures: analysis and optimization[J]. Composite Structures, 2019, 227: 111276. doi: 10.1016/j.compstruct.2019.111276
|
[18] |
ZHANG Y, TICHEM M, VAN KEULEN F. A novel design of multi-stable metastructures for energy dissipation[J]. Materials Design, 2021, 212: 110234. doi: 10.1016/j.matdes.2021.110234
|
[19] |
TAN X J, WANG L C, ZHU S W, et al. A general strategy for performance enhancement of negative stiffness mechanical metamaterials[J]. European Journal of Mechanics A: Solids, 2022, 96: 104702. doi: 10.1016/j.euromechsol.2022.104702
|
[20] |
MENG Z Q, OUYANG Z, CHEN C Q. Multi-step metamaterials with two phases of elastic and plastic deformation[J]. Composite Structures, 2021, 271: 114152. doi: 10.1016/j.compstruct.2021.114152
|
[21] |
SHI J H, MOFATTEH H, MIRABOLGHASEMI A, et al. Programmable multistable perforated shellular[J]. Advanced Materials, 2021, 33(42): 210243.
|
[22] |
LIU S H, AZAD A, BURGUENO R. Architected materials for tailorable shear behavior with energy dissipation[J]. Extreme Mechanics Letters, 2019, 28: 1-7. doi: 10.1016/j.eml.2019.01.010
|
[23] |
CHEN S, WANG B, ZHU S W, et al. A novel composite negative stiffness structure for recoverable trapping energy[J]. Composites Part A, 2020, 129: 105697. doi: 10.1016/j.compositesa.2019.105697
|