Citation: | SUN Hao, WANG Xin, HU Aohua, MA Chao. Robust Constraint Following Control of Lower Limb Rehabilitation Robots Based on the Generalized Udwadia-Kalaba Method[J]. Applied Mathematics and Mechanics, 2025, 46(4): 451-464. doi: 10.21656/1000-0887.450085 |
[1] |
蔡国平, 刘晓峰, 刘元卿. 空间机器人捕获动力学与控制[J]. 动力学与控制学报, 2023, 21 (12): 22-36.
CAI Guoping, LIU Xiaofeng, LIU Yuanqing. Capturing dynamics and control of space robots[J]. Journal of Dynamics and Control, 2023, 21 (12): 22-36. (in Chinese)
|
[2] |
尤鑫烨, 陈力. 外部扰动下空间机器人基于扰动观测器的鲁棒控制[J]. 动力学与控制学报, 2021, 19 (2): 37-42.
YOU Xinye, CHEN Li. Robust control of space robot based on disturbance observer under external disturbance[J]. Journal of Dynamics and Control, 2021, 19 (2): 37-42. (in Chinese)
|
[3] |
HAN S S, WANG H P, TIAN Y. Model-free based adaptive nonsingular fast terminal sliding mode control with time-delay estimation for a 12 DOF multi-functional lower limb exoskeleton[J]. Advances in Engineering Software, 2018, 119 : 38-47. doi: 10.1016/j.advengsoft.2018.01.004
|
[4] |
杜义浩, 邱石, 谢平, 等. 下肢康复机器人的自适应人机交互控制策略[J]. 自动化学报, 2018, 44 (4): 743-750.
DU Yihao, QIU Shi, XIE Ping, et al. Adaptive interaction control for lower limb rehabilitation robots[J]. Acta Automatica Sinica, 2018, 44 (4): 743-750. (in Chinese)
|
[5] |
KREBS H I, HOGAN N, AISEN M L, et al. Robot-aided neurorehabilitation[J]. IEEE Transactions on Rehabilitation Engineering, 1998, 6 (1): 75-87. doi: 10.1109/86.662623
|
[6] |
文忠, 钱晋武, 沈林勇, 等. 基于阻抗控制的步行康复训练机器人的轨迹自适应[J]. 机器人, 2011, 33 (2): 142-149.
WEN Zhong, QIAN Jinwu, SHEN Linyong, et al. Trajectory adaptation for impedance control based walking rehabilitation training robot[J]. Robot, 2011, 33 (2): 142-149. (in Chinese)
|
[7] |
MOSHAII A A, MOGHADDAM M M, NIESTANAK V D. Fuzzy sliding mode control of a wearable rehabilitation robot for wrist and finger[J]. Industrial Robot: the International Journal of Robotics Research and Application, 2019, 46 (6): 839-850. doi: 10.1108/IR-05-2019-0110
|
[8] |
曹福成, 邢笑雪, 李元春, 等. 下肢康复机器人轨迹自适应滑模阻抗控制[J]. 吉林大学学报(工学版), 2016, 46 (5): 1602-1608.
CAO Fucheng, XING Xiaoxue, LI Yuanchun, et al. Adaptive trajectory sliding mode impedance control for lower limb rehabilitation robot[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46 (5): 1602-1608. (in Chinese)
|
[9] |
MIRRASHID N, ALIBEIKI E, RAKHTALA S M. Development and control of an upper limb rehabilitation robot via ant colony optimization-PID and fuzzy-PID controllers[J]. International Journal of Engineering, 2022, 35 (8): 1488-1493. doi: 10.5829/IJE.2022.35.08B.04
|
[10] |
LI J, ZHOU Y, DONG M, et al. Isokinetic muscle strength training strategy of an ankle rehabilitation robot based on adaptive gain and cascade PID control[J]. IEEE Transactions on Cognitive and Developmental Systems, 2023, 15 (1): 100-110. doi: 10.1109/TCDS.2022.3145998
|
[11] |
程思远, 陈广锋. 下肢康复外骨骼机器人模糊PID控制研究与仿真[J]. 测控技术, 2019, 38 (12): 22-28.
CHENG Siyuan, CHEN Guangfeng. Research and simulation of fuzzy PID control for lower limb rehabilitation exoskeleton robot[J]. Measurement & Control Technology, 2019, 38 (12): 22-28. (in Chinese)
|
[12] |
DU Y, WANG H, QIU S, et al. An advanced adaptive control of lower limb rehabilitation robot[J]. Frontiers in Robotics and AI, 2018, 5 : 116. doi: 10.3389/frobt.2018.00116
|
[13] |
KHOSHDEL V, AKBARZADEH A, NAGHAVI N, et al. sEMG-based impedance control for lower-limb rehabilitation robot[J]. Intelligent Service Robotics, 2018, 11 (1): 97-108. doi: 10.1007/s11370-017-0239-4
|
[14] |
MA Y, WANG J, LI Q, et al. Adaptive sliding mode control strategy based on disturbance observer and neural network for lower limb rehabilitative robot[J]. IET Control Theory & Applications, 2023, 17 (4): 381-399.
|
[15] |
沈智达, 杨卫华, 于晋伟. 基于神经网络的不确定移动机器人鲁棒自适应跟踪控制[J]. 动力学与控制学报, 2023, 21 (7): 89-96.
SHEN Zhida, YANG Weihua, YU Jinwei. Robust adaptive tracking control of uncertain mobile robot based on neural network[J]. Journal of Dynamics and Control, 2023, 21 (7): 89-96. (in Chinese)
|
[16] |
SHEN Z, ZHOU J, GAO J, et al. Fuzzy logic based PID control of a 3 DOF lower limb rehabilitation robot[C]// 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). Tianjin: IEEE, 2018: 818-821.
|
[17] |
王瑷珲, 葛祎霏, 胡宁宁, 等. 基于步态数据的下肢康复机器人控制设计[J]. 控制工程, 2021, 28 (11): 2266-2272.
WANG Aihui, GE Yifei, HU Ningning, et al. Control design of lower limb rehabilitation robot based on gait data[J]. Control Engineering of China, 2021, 28 (11): 2266-2272. (in Chinese)
|
[18] |
UDWADIA F E. A new perspective on the tracking control of nonlinear structural and mechanical systems[J]. Proceedings of the Royal Society of London (Series A): Mathematical, Physical and Engineering Sciences, 2003, 459 (2035): 1783-1800.
|
[19] |
CHEN Y H, ZHANG X. Adaptive robust approximate constraint-following control for mechanical systems[J]. Journal of the Franklin Institute, 2010, 347 (1): 69-86.
|
[20] |
CHEN X, ZHAO H, ZHEN S, et al. Adaptive robust control for a lower limbs rehabilitation robot running under passive training mode[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6 (2): 493-502.
|
[21] |
YU R, ZHAO H, ZHEN S, et al. A novel approach for 2-degrees of freedom redundant parallel manipulator dynamics[J]. Advances in Mechanical Engineering, 2017, 9 (6): 168781401770506.
|
[22] |
赵韩, 赵福民, 黄康, 等. 基于Udwadia-Kalaba理论的机械臂位置控制[J]. 合肥工业大学学报(自然科学版), 2018, 41 (4): 433-438.
ZHAO Han, ZHAO Fumin, HUANG Kang, et al. Position control of mechanical manipulator based on Udwadia-Kalaba theory[J]. Journal of Hefei Univercity of Technology (Natural Science), 2018, 41 (4): 433-438. (in Chinese)
|
[23] |
董方方, 杨超, 韩江, 等. 移动机械臂的层级聚合建模方法研究[J]. 应用数学和力学, 2023, 44 (12): 1473-1490. doi: 10.21656/1000-0887.440025
DONG Fangfang, YANG Chao, HAN Jiang, et al. A hierarchical aggregation modelling method for mobile manipulators[J]. Applied Mathematics and Mechanics, 2023, 44 (12): 1473-1490. (in Chinese) doi: 10.21656/1000-0887.440025
|
[24] |
徐张宝, 朱忠领, 马大为, 等. 考虑状态约束的液压系统自适应控制[J]. 西安交通大学学报, 2017, 51 (1): 97-102.
XU Zhangbao, ZHU Zhongling, MA Dawei, et al. Adaptive control of hydraulic systems with state constraints[J]. Journal of Xi'an Jiaotong University, 2017, 51 (1): 97-102. (in Chinese)
|
[25] |
SUN K, MOU S, QIU J, et al. Adaptive fuzzy control for nontriangular structural stochastic switched nonlinear systems with full state constraints[J]. IEEE Transactions on Fuzzy Systems, 2019, 27 (8): 1587-1601.
|
[26] |
UDWADIA F E, KALABA R E. Analytical Dynamics[M]. Cambridge: Cambridge University Press, 1996.
|
[27] |
KALABA R, UDWADIA F. Analytical dynamics with constraint forces that do work in virtual displacements[J]. Applied Mathematics and Computation, 2001, 121 (2/3): 211-217.
|
[28] |
ZHANG X, ZHU W, WU X, et al. Dynamics and control for in-space assembly robots with large translational and rotational maneuvers[J]. Acta Astronautica, 2020, 174 : 166-179.
|
[29] |
CHEN Y H, LEITMANN G. Robustness of uncertain systems in the absence of matching assumptions[J]. International Journal of Control, 1987, 45 (5): 1527-1542.
|