Citation: | SONG Shangxiao, JIANG Longxiang, WANG Liyuan, CHU Xinkun, ZHANG Hao. ROE-Scheme Physics-Augmented Graph Neural Networks in Solving Eulerian and Laminar Flow Incompressible NS Equations[J]. Applied Mathematics and Mechanics, 2025, 46(1): 55-71. doi: 10.21656/1000-0887.450098 |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J].Journal of Computational Physics,2019,378: 686-707.
|
[2]KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physics-informed machine learning[J].Nature Reviews Physics,2021,3: 422-440.
|
[3]王江, 陈文. 基于组合神经网络的时间分数阶扩散方程计算方法[J]. 应用数学和力学, 2019,40(7): 741-750.(WANG Jiang, CHEN Wen. A combined artificial neural network method for solving time fractional diffusion equations[J].Applied Mathematics and Mechanics,2019,40(7): 741-750.(in Chinese))
|
[4]林云云, 郑素佩, 封建湖, 等. 间断问题扩散正则化的PINN反问题求解算法[J]. 应用数学和力学, 2023,44(1): 112-122.(LIN Yunyun, ZHENG Supei, FENG Jianhu, et al. Diffusive regularization inverse PINN solutions to discontinuous problems[J].Applied Mathematics and Mechanics,2023,44(1): 112-122.(in Chinese))
|
[5]DAFERMOS C M.Hyperbolic Conservation Laws in Continuum Physics[M]. Berlin: Springer, 2016.
|
[6]MAO Z, JAGTAP A D, KARNIADAKIS G E. Physics-informed neural networks for high-speed flows[J].Computer Methods in Applied Mechanics and Engineering,2020,360: 112789.
|
[7]LEVEQUE R J.Finite-Volume Methods for Hyperbolic Problems[M]. Cambridge: Cambridge University Press, 2002.
|
[8]GODLEWSKI E, RAVIART P A.Numerical Approximation of Hyperbolic Systems of Conservation Laws[M]. New York: Springer, 1996.
|
[9]COCKBURN B, KARNIADAKIS G E, SHU C W.Discontinuous Galerkin Methods[M]. Berlin: Springer, 2000.
|
[10]MAGIERA J, RAY D, HESTHAVEN J S, et al. Constraint-aware neural networks for Riemann problems[J].Journal of Computational Physics,2020,409: 109345.
|
[11]SCHWANDER L, RAY D, HESTHAVEN J S. Controlling oscillations in spectral methods by local artificial viscosity governed by neural networks[J].Journal of Computational Physics,2021,431: 110144.
|
[12]BEZGIN D A, SCHMIDT S J, ADAMS N A. A data-driven physics-informed finite-volume scheme for nonclassical undercompressive shocks[J]. Journal of Computational Physics,2021,437: 110324.
|
[13]BEZGIN D A, SCHMIDT S J, ADAMS N A. WENO3-NN: a maximum-order three-point data-driven weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics,2022,452: 110920.
|
[14]LIU L, LIU S, XIE H, et al. Discontinuity computing using physics-informed neural networks[J].Journal of Scientific Computing,2024,98: 22.
|
[15]CAO W, SONG J, ZHANG W. A solver for subsonic flow around airfoils based on physics-informed neural networks and mesh transformation[J].Physics of Fluids,2024,36(2): 027134.
|
[16]HUANG H, LIU Y, YANG V. Neural networks with inputs based on domain of dependence and A converging sequence for solving conservation laws, part Ⅰ: 1D Riemann problems[J/OL]. 2021[2024-07-08]. https://arxiv.org/abs/2109.09316.
|
[17]ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J].Journal of Computational Physics,1981,43(2):357-372.
|
[18]GODUNOV S K. A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations[J].Mathematics of the USSR-Sbornik,1959,47: 271-306.
|
[19]VAN LEER B.Towards the Ultimate Conservative Difference Scheme I. The Quest of Monotonicity[M]. Berlin: Heidelberg, 1973.
|
[20]VAN LEER B. Towards the ultimate conservative difference scheme[J].Journal of Computational Physics,1997,135(2): 229-248.
|
[21]HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes, Ⅲ[J].Journal of Computational Physics,1997,131(1): 3-47.
|
[22]LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J].Journal of Computational Physics,1994,115(1): 200-212.
|
[23]LIU Y, SHU C W, TADMOR E, et al. Central discontinuous Galerkin methods on overlapping cells with a nonoscillatory hierarchical reconstruction[J].SIAM Journal on Numerical Analysis,2007,45(6): 2442-2467.
|
[24]LIU Y, SHU C W, TADMOR E, et al. Non-oscillatory hierarchical reconstruction for central and finite volume schemes[J].Communications in Computational Physics,2007,2(5): 933-963.
|
[25]XU Z, LIU Y, SHU C W. Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells[J].Journal of Computational Physics,2009,228(6): 2194-2212.
|
[26]YANG V. Modeling of supercritical vaporization, mixing, and combustion processes in liquid-fueled propulsion systems[J].Proceedings of the Combustion Institute,2000,28(1): 925-942.
|
[27]WANG X, YANG V. Supercritical mixing and combustion of liquid-oxygen/kerosene bi-swirl injectors[J].Journal of Propulsion and Power,2016,33(2): 316-322.
|
[28]UNNIKRISHNAN U, HUO H, WANG X, et al. Subgrid scale modeling considerations for large eddy simulation of supercritical turbulent mixing and combustion[J].Physics of Fluids,2021,33(7): 075112.
|
[29]TEYSSIER R, COMMERON B. Numerical methods for simulating star formation[J].Frontiers in Astronomy and Space Sciences,2019,6: 51.
|
[30]BAR-SINAI Y, HOYER S, HICKEY J, et al. Learning data-driven discretizations for partial differential equations[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(31): 15344-15349.
|
[31]高普阳, 赵子桐, 杨扬. 基于卷积神经网络模型数值求解双曲型偏微分方程的研究[J]. 应用数学和力学, 2021,42(9): 932-947.(GAO Puyang, ZHAO Zitong, YANG Yang. Study on numerical solutions to hyperbolic partial differential equations based on the convolutional neural network model[J].Applied Mathematics and Mechanics,2021,42(9): 932-947.(in Chinese))
|
[32]JIANG L, WANG L, CHU X, et al. PhyGNNet: solving spatiotemporal PDEs with physics-informed graph neural network[C]//Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning. Shanghai: ACM, 2023: 143-147.
|
[33]ZHANG H, JIANG L, CHU X, et al. Combining physics-informed graph neural network and finite difference for solving forward and inverse spatiotemporal PDEs[J/OL]. 2024[2024-07-08]. https://arxiv.org/abs/2405.20000.
|
[34]GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[J/OL]. 2017[2024-07-08]. https://arxiv.org/abs/1704.01212v2.
|
[35]SANCHEZ-GONZALEZ A, GODWIN J, PFAFF T, et al. Learning to simulate complex physics with graph networks[C]//Proceedings of the 37th International Conference on Machine Learning. 2020: 8459-468.
|