Citation: | CHEN Qing, HUANG Zhiqiang, KONG Xiangwei, HE Xianjie, XU Zhou, AN Guotao. Study on Overflow Accident Monitoring Based on Synchronous Features of Multiple Well Logging Parameters[J]. Applied Mathematics and Mechanics, 2025, 46(2): 241-253. doi: 10.21656/1000-0887.450125 |
[1] |
孔祥伟, 刘祚才, 靳彦欣. 川渝裂缝性地层自动压井环空多相压力波速特性研究[J]. 应用数学和力学, 2022, 43 (12): 1370-1379. doi: 10.21656/1000-0887.430006
KONG Xiangwei, LIU Zuocai, JIN Yanxin. Study on multiphase pressure wave velocity characteristics of automatic kill annulus in Chuanyu fractured formation[J]. Applied Mathematics and Mechanics, 2022, 43 (12): 1370-1379. (in Chinese) doi: 10.21656/1000-0887.430006
|
[2] |
SCHAFER D M, LOEPPKE G E, GLOWKA D A, et al. An evaluation of flowmeters for the detection of kicks and lost circulation during drilling[C]//IADC/SPE Drilling Conference. New Orleans, Louisiana: SPE, 1992: SPE-23935-MS.
|
[3] |
刘书杰, 杨向前, 郭华, 等. 井控溢流快速判断方法研究[J]. 煤炭技术, 2017, 36 (5): 296-298.
LIU Shujie, YANG Xiangqian, GUO Hua, et al. Research for judgment method of well control overflow[J]. Coal Technology, 2017, 36 (5): 296-298. (in Chinese)
|
[4] |
付加胜, 刘伟, 韩霄松, 等. 基于CNN-LSTM融合网络的溢流早期预测深度学习方法[J]. 石油机械, 2021, 49 (6): 16-22.
FU Jiasheng, LIU Wei, HAN Xiaosong, et al. CNN-LSTM fusion network based deep learning method for early prediction of overflow[J]. China Petroleum Machinery, 2021, 49 (6): 16-22. (in Chinese)
|
[5] |
常杨, 郭修成, 李永钊, 等. 基于随钻工程参数测量数据的钻井风险识别试验[J]. 钻采工艺, 2022, 45 (5): 150-153.
CHANG Yang, GUO Xiucheng, LI Yongzhao, et al. Drilling risk analysis test based on engineering parameter measurement while drilling[J]. Drilling & Production Technology, 2022, 45 (5): 150-153. (in Chinese)
|
[6] |
姚浩, 夏桂然, 刘泽佳, 等. 基于机器学习的黏钢构件黏接层缺陷识别方法研究[J]. 应用数学和力学, 2024, 45 (4): 429-442. doi: 10.21656/1000-0887.440365
YAO Hao, XIA Guiran, LIU Zejia, et al. A defect identification method for bonding layers of adhesive steel members based on machine learning[J]. Applied Mathematics and Mechanics, 2024, 45 (4): 429-442. (in Chinese) doi: 10.21656/1000-0887.440365
|
[7] |
姚明辉, 王兴志, 吴启亮, 等. 基于RBF神经网络的压气机叶片面压力场预测研究[J]. 应用数学和力学, 2023, 44 (10): 1187-1199. doi: 10.21656/1000-0887.440054
YAO Minghui, WANG Xingzhi, WU Qiliang, et al. RBF neural network based prediction on blade surface pressure fields in compressors[J]. Applied Mathematics and Mechanics, 2023, 44 (10): 1187-1199. (in Chinese) doi: 10.21656/1000-0887.440054
|
[8] |
李杨, 闫冬梅, 刘磊. 基于输出层具有噪声的DQN的无人车路径规划[J]. 应用数学和力学, 2023, 44 (4): 450-460. doi: 10.21656/1000-0887.430070
LI Yang, YAN Dongmei, LIU Lei. UGV path programming based on the DQN with noise in the output layer[J]. Applied Mathematics and Mechanics, 2023, 44 (4): 450-460. (in Chinese) doi: 10.21656/1000-0887.430070
|
[9] |
王沐晨, 李立州, 张珺, 等. 基于卷积神经网络气动力降阶模型的翼型优化方法[J]. 应用数学和力学, 2022, 43 (1): 77-83. doi: 10.21656/1000-0887.420137
WANG Muchen, LI Lizhou, ZHANG Jun, et al. An airfoil optimization method based on the convolutional neural network aerodynamic reduced order model[J]. Applied Mathematics and Mechanics, 2022, 43 (1): 77-83. (in Chinese) doi: 10.21656/1000-0887.420137
|
[10] |
周济民, 张海晨, 王沫然. 基于物理经验模型约束的机器学习方法在页岩油产量预测中的应用[J]. 应用数学和力学, 2021, 42 (9): 881-890. doi: 10.21656/1000-0887.420015
ZHOU Jimin, ZHANG Haichen, WANG Moran. Machine learning with physical empirical model constraints for prediction of shale oil production[J]. Applied Mathematics and Mechanics, 2021, 42 (9): 881-890. (in Chinese) doi: 10.21656/1000-0887.420015
|
[11] |
KAMYAB M, SHADIZADEH S R, JAZAYERI-RAD H, et al. Early kick detection using real time data analysis with dynamic neural network: a case study in Iranian oil fields[C]//Nigeria Annual International Conference and Exhibition. Tinapa-Calabar, Nigeria: SPE, 2010: SPE-136995-MS.
|
[12] |
HARGREAVES D, JARDINE S, JEFFRYES B. Early kick detection for deepwater drilling: new probabilistic methods applied in the field[C]//SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana: SPE, 2001: SPE-71369-MS.
|
[13] |
NHAT D M, VENKATESAN R, KHAN F. Data-driven Bayesian network model for early kick detection in industrial drilling process[J]. Process Safety and Environmental Protection, 2020, 138 : 130-138. doi: 10.1016/j.psep.2020.03.017
|
[14] |
ALOUHALI R, ALJUBRAN M, GHARBI S, et al. Drilling through data: automated kick detection using data mining[C]//SPE International Heavy Oil Conference and Exhibition. Kuwait City, Kuwait: SPE, 2018: SPE-193687-MS.
|
[15] |
袁俊亮, 范白涛, 幸雪松, 等. 基于朴素贝叶斯算法的钻井溢流实时预警研究[J]. 石油钻采工艺, 2021, 43 (4): 455-460.
YUAN Junliang, FAN Baitao, XING Xuesong, et al. Real-time early warning of drilling overflow based on naive Bayes algorithm[J]. Oil Drilling & Production Technology, 2021, 43 (4): 455-460. (in Chinese)
|
[16] |
岳炜杰. "三高" 油气井溢流先兆在线监测与预警系统设计与开发[D]. 东营: 中国石油大学(华东), 2014.
YUE Weijie. The design and development of online monitoring and warning system for kick foreboding on "three high" wells[D]. Dongying: China University of Petroleum (Huadong), 2014. (in Chinese)
|
[17] |
徐振华. 基于云计算的控压钻井溢流监测诊断系统研究与设计[D]. 成都: 西南石油大学, 2019.
XU Zhenhua. Research and design of control pressure drilling overflow monitoring and diagnosis system based on cloud computing[D]. Chengdu: Southwest Petroleum University, 2019. (in Chinese)
|
[18] |
张倩. 基于机器学习的钻井事故识别系统研究与实现[D]. 西安: 西安石油大学, 2021.
ZHANG Qian. Research and implementation of drilling accident recongnition system based on machine learning[D]. Xi'an: Xi'an Shiyou University, 2021. (in Chinese)
|
[19] |
肖宏亮. 基于机器学习的石油钻井流监测研究与应用[D]. 北京: 北京邮电大学, 2020.
XIAO Hongliang. Research and application of oil well overflow monitoring based on machine learning[D]. Beijing: Beijing University of Posts and Telecommunications, 2020. (in Chinese)
|
[20] |
李玉飞, 张博, 孙伟峰. 基于SVM和D-S证据理论的早期溢流智能识别方法[J]. 钻采工艺, 2020, 43 (5): 27-30.
LI Yufei, ZHANG Bo, SUN Weifeng. Research on intelligent early kick identification method based on SVM and D-S evidence theory[J]. Drilling & Production Technology, 2020, 43 (5): 27-30. (in Chinese)
|
[21] |
张旭, 王芷桁, 李鑫, 等. 大数据驱动下的溢流监测预警发展现状[J]. 中国石油和化工标准与质量, 2022, 42 (1): 124-125.
ZHANG Xu, WANG Zhiheng, LI Xin, et al. Development status of overflow monitoring and early warning under the driving of big data[J]. China Petroleum and Chemical Standard and Quality, 2022, 42 (1): 124-125. (in Chinese)
|
[22] |
肖阳, 王家豪, 李志刚, 等. 基于大数据的页岩油区块产量差异分析方法研究[J]. 钻采工艺, 2022, 45 (3): 73-78.
XIAO Yang, WANG Jiahao, LI Zhigang, et al. Study on production difference analysis method of shale oil play based on big data[J]. Drilling & Production Technology, 2022, 45 (3): 73-78. (in Chinese)
|
[23] |
沈旭东, 刘慧卿, 张郁哲, 等. 基于机器学习的二次采油高耗水层识别方法研究[J]. 钻采工艺, 2022, 45 (4): 74-80.
SHEN Xudong, LIU Huiqing, ZHANG Yuzhe, et al. Identification method for high water consumption layer in second oil recovery based on machine learning[J]. Drilling & Production Technology, 2022, 45 (4): 74-80. (in Chinese)
|
[24] |
SABAH M, TALEBKEIKHAH M, AGIN F, et al. Application of decision tree, artificial neural networks, and adaptive neuro-fuzzy inference system on predicting lost circulation: a case study from Marun oil field[J]. Journal of Petroleum Science and Engineering, 2019, 177 : 236-249.
|
[25] |
KHODNENKO I, IVANOV S, PERETS D, et al. Detection of lost circulation in drilling wells employing sensor data using machine learning technique[J]. Procedia Computer Science, 2019, 156 : 300-307.
|
[26] |
盛茂, 李根生, 田守嶒, 等. 人工智能在油气压裂增产中的研究现状与展望[J]. 钻采工艺, 2022, 45 (4): 1-8.
SHENG Mao, LI Gensheng, TIAN Shouceng, et al. Research status and prospect of artificial intelligence in reservoir fracturing stimulation[J]. Drilling & Production Technology, 2022, 45 (4): 1-8. (in Chinese)
|
[27] |
任明仑, 宋月丽, 褚伟. 灰铸铁抗拉强度预测的局部加权线性回归建模[J]. 电子测量与仪器学报, 2019, 33 (3): 65-71.
REN Minglun, SONG Yueli, CHU Wei. Locally weighted linear regression modeling for tensile strength prediction of gray cast iron[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33 (3): 65-71. (in Chinese)
|
[28] |
杨鹏史, 丁卉, 陈同, 等. 基于局部加权线性回归的城市公交车排放能耗预测[J]. 中山大学学报(自然科学版), 2019, 58 (6): 111-118.
YANG Pengshi, DING Hui, CHEN Tong, et al. Estimation of emissions or electricity consumptions of urban buses based on locally weighted linear regression[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019, 58 (6): 111-118. (in Chinese)
|
[29] |
吴博, 梁循, 张树森, 等. 图神经网络前沿进展与应用[J]. 计算机学报, 2022, 45 (1): 35-68.
WU Bo, LIANG Xun, ZHANG Shusen, et al. Advances and applications in graph neural network[J]. Chinese Journal of Computers, 2022, 45 (1): 35-68. (in Chinese)
|
[30] |
杨希洪, 郑群, 章佳欣, 等. 基于特征插值的深度图对比聚类算法[J]. 计算机科学, 2024, 51 (11): 157-165.
YANG Xihong, ZHENG Qun, ZHANG Jiaxin, et al. Feature interpolation based deep graph contrastive clustering algorithm[J]. Computer Science, 2024, 51 (11): 157-165. (in Chinese)
|
[31] |
王岩, 吴晓富. 深度神经网络训练中适用于小批次的归一化算法[J]. 计算机科学, 2019, 46 (11A): 273-276.
WANG Yan, WU Xiaofu. Novel normalization algorithm for training of deep neural networks with small batch sizes[J]. Computer Science, 2019, 46 (11A): 273-276. (in Chinese)
|
[32] |
王赞, 闫明, 刘爽, 等. 深度神经网络测试研究综述[J]. 软件学报, 2020, 31 (5): 1255-1275.
WANG Zan, YAN Ming, LIU Shuang, et al. Survey on testing of deep neural networks[J]. Journal of Software, 2020, 31 (5): 1255-1275. (in Chinese)
|
[33] |
王钰豪, 郝家胜, 张帆, 等. 钻井溢流风险的自适应LSTM预警方法[J]. 控制理论与应用, 2022, 39 (3): 441-448.
WANG Yuhao, HAO Jiasheng, ZHANG Fan, et al. Adaptive LSTM early warning method for kick detection in drilling[J]. Control Theory & Applications, 2022, 39 (3): 441-448. (in Chinese)
|
[34] |
郭立力, 赵春江. 十折交叉检验的支持向量机参数优化算法[J]. 计算机工程与应用, 2009, 45 (8): 55-57.
GUO Lili, ZHAO Chunjiang. Optimizing parameters of support vector machine's model based on genetic algorithm[J]. Computer Engineering and Applications, 2009, 45 (8): 55-57. (in Chinese)
|
[35] |
LIU Y H, MAHMASSANI H S. Global maximum likelihood estimation procedure for multinomial probit (MNP) model parameters[J]. Transportation Research (Part B): Methodological, 2000, 34 (5): 419-449.
|