Citation: | FENG Linglin, QI Bing, LIU Shaobao. Vibration Dynamics for Cell Nuclei Under Ultrasonic Excitations[J]. Applied Mathematics and Mechanics, 2025, 46(7): 821-835. doi: 10.21656/1000-0887.450140 |
[1] |
ANAND U, DEY A, CHANDEL A K S, et al. Cancer chemotherapy and beyond: current status, drug candidates, associated risks and progress in targeted therapeutics[J]. Genes Dis, 2023, 10(4): 1367-1401.
|
[2] |
TIJORE A, MARGADANT F, YAO M X, et al. Ultrasound-mediated mechanical forces selectively kill tumor cells[J/OL]. 2020(2020-10-09)[2024-05-14]. DOI:
|
[3] |
MITTELSTEIN D, YE J, SCHIBBER E F, et al. Selective ablation of cancer cells with low intensity pulsed ultrasound[J]. Applied Physice Letters, 2020(2020-10-09)[2024-05-14], 116(1): 013701.
|
[4] |
LIU S, LI Y, HONG Y, et al. Mechanotherapy in oncology: targeting nuclear mechanics and mechanotransduction[J]. Advanced Drug Delivery Reviews, 2023, 194: 114722.
|
[5] |
HEYDEN S, ORTIZ M. Oncotripsy: targeting cancer cells selectively via resonant harmonic excitation[J]. Journal of the Mechanics and Physics of Solids, 2016, 92: 164-175.
|
[6] |
SCHIBBER E F, MITTELSTEIN D R, GHARIB M, et al. A dynamical model of oncotripsy by mechanical cell fatigue: selective cancer cell ablation by low-intensity pulsed ultrasound[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476(2236): 20190692.
|
[7] |
LIU S, YANG H, WANG M, et al. Torsional and translational vibrations of a eukaryotic nucleus, and the prospect of vibrational mechanotransduction and therapy[J]. Journal of the Mechanics and Physics of Solids, 2021, 155: 104572.
|
[8] |
OESTREICHER H L. Field and impedance of an oscillating sphere in a viscoelastic medium with an application to biophysics[J]. Acoustical Society of America Journal, 1951, 23(6): 707.
|
[9] |
FRIZZELL L A, CARSTENSEN E L. Shear properties of mammalian tissues at low megahertz frequencies[J]. The Journal of the Acoustical Society of America, 1976, 60(6): 1409-1411.
|
[10] |
ILINSKII Y A, DOUGLAS MEEGAN G, ZABOLOTSKAYA E A, et al. Gas bubble and solid sphere motion in elastic media in response to acoustic radiation force[J]. Journal of the Acoustical Society of America, 2005, 117(4 Pt 1): 2338-2346.
|
[11] |
SURESH S. Biomechanics and biophysics of cancer cells[J]. Acta Biomaterialia, 2007, 3(4): 413-438.
|
[12] |
QI Bing, LIN Shujuan, GUO Yaohua, et al. Local resonance of mechanosensitive channels[J]. Journal of the Mechanics and Physics of Solids, 2025, 203: 106249.
|
[13] |
LOVE A E H. The stress produced in a semi-infinite solid by pressure on part of the boundary[J]. Philosophical Transactions of the Royal Society of London (Series A): Containing Papers of a Mathematical or Physical Character, 1929, 228: 377-420.
|
[14] |
JOHNSON K L. Contact Mechanics[M]. Cambridge: Cambridge University Press, 1987.
|
[15] |
MAXEY M R, RILEY J J. Equation of motion for a small rigid sphere in a nonuniform flow[J]. Physics of Fluids, 1983, 26(4): 883-889.
|
[16] |
WANG Q, RIAUD A, ZHOU J, et al. Acoustic radiation force on small spheres due to transient acoustic fields[J]. Physical Review Applied, 2021, 15(4): 044034.
|
[17] |
OR M, KIMMEL E. Modeling linear vibration of cell nucleus in low intensity ultrasound field[J]. Ultrasound in Medicine & Biology, 2009, 35(6): 1015-1025.
|
[18] |
LANDAU L D, LIFSHITZ E M. Fluid Mechanics[M]. Oxford: Pergamon, 1987.
|
[19] |
范惠康, 尤一龙, 尤凤翔. 弹簧振子非线性振动动力响应分析[J]. 民营科技, 2012(10): 52-54.
FAN Huikang, YOU Yilong, YOU Fengxiang. Dynamic response analysis of nonlinear vibration of spring oscillator[J]. Private Science and Technolog, 2012(10): 52-54. (in Chinese)
|
[20] |
郝卓芳, 罗欣鸣, 黄世章, 等. 星形细胞瘤瘤细胞核的密度参数和形状参数的分析[J]. 广州医学院学报, 1993, 21(1): 22-25.
HAO Zhuofang, LUO Xinming, HUANG Shizhang, et al. Analysis of density and shape parameters of tumor cell nuclei in astrocytoma[J]. Academic Journal of Guangzhou Medical College, 1993, 21(1): 22-25. (in Chinese)
|
[21] |
LIM C T, DAO M, SURESH S, et al. Large deformation of living cells using laser traps[J]. Acta Materialia, 2004, 52(7): 1837-1845.
|
[22] |
MOSHAYEDI P, NG G, KWOK J C F, et al. The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system[J]. Biomaterials, 2014, 35(13): 3919-3925.
|
[23] |
CAILLE N, THOUMINE O, TARDY Y, et al. Contribution of the nucleus to the mechanical properties of endothelial cells[J]. Journal of Biomechanics, 2002, 35(2): 177-187.
|
[24] |
KARDAS D, NACKENHORST U, BALZANI D. Computational model for the cell-mechanical response of the osteocyte cytoskeleton based on self-stabilizing tensegrity structures[J]. Biomechanics and Modeling in Mechanobiology, 2013, 12(1): 167-183.
|
[25] |
LEIPZIG N D, ATHANASIOU K A. Static compression of single chondrocytes catabolically modifies single-cell gene expression[J]. Biophysical Journal, 2008, 94(6): 2412-2422.
|
[26] |
ROZMAN C, MIONTSERRAT E, FELIU E, et al. Lymphocyte size and survival of patients with chronic lymphocytic leukaemia (B-type)[J]. Scandinavian Journal of Haematology, 1980, 24(4): 315-320.
|
[27] |
WADE R H. On and around microtubules: an overview[J]. Molecular Biotechnology, 2009, 43(2): 177-191.
|
[28] |
BIRNIE G D. Subnuclear Components: Preparation and Fractionation[M]. London: Butterworths, 1976.
|