Citation: | XU Shuang, WANG Yihong, XU Xuying, PAN Xiaochuan, WANG Rubin. Neurodynamical Modeling of 3D Spatial Activity Patterns of Head-Direction Cells[J]. Applied Mathematics and Mechanics, 2025, 46(7): 836-854. doi: 10.21656/1000-0887.450234 |
[1] |
TAUBE J S. Head direction cells recorded in the anterior thalamic nuclei of freely moving rats[J]. The Journal of Neuroscience, 1995, 15(1): 70-86.
|
[2] |
TAUBE J S, MULLER R U, RANCK J B. Head-direction cells recorded from the postsubiculum in freely moving rats, Ⅱ: effects of environmental manipulations[J]. The Journal of Neuroscience, 1990, 10(2): 436-447.
|
[3] |
TAUBE J S, MULLER R U, RANCK J B. Head-direction cells recorded from the postsubiculum in freely moving rats, Ⅰ: description and quantitative analysis[J]. The Journal of Neuroscience, 1990, 10(2): 420-435.
|
[4] |
TAUBE J S. The head direction signal: origins and sensory-motor integration[J]. Annual Review of Neuroscience, 2007, 30: 181-207.
|
[5] |
BUTLER W N, SMITH K S, VAN DER MEER M A A, et al. The head-direction signal plays a functional role as a neural compass during navigation[J]. Current Biology, 2017, 27(9): 1259-1267.
|
[6] |
MCNAUGHTON B L, CHEN L L, MARKUS E J. "Dead reckoning", landmark learning, and the sense of direction: a neurophysiological and computational hypothesis[J]. Journal of Cognitive Neuroscience, 1991, 3(2): 190-202.
|
[7] |
WU L Q, DICKMAN J D. Neural correlates of a magnetic sense[J]. Science, 2012, 336(6084): 1054-1057.
|
[8] |
ANGELAKI D E, LAURENS J. The head direction cell network: attractor dynamics, integration within the navigation system, and three-dimensional properties[J]. Current Opinion in Neurobiology, 2020, 60: 136-144.
|
[9] |
KNIERIM J J, ZHANG K. Attractor dynamics of spatially correlated neural activity in the limbic system[J]. Annual Review of Neuroscience, 2012, 35: 267-285.
|
[10] |
REDISH A D, ELGA A N, TOURETZKY D S. A coupled attractor model of the rodent head direction system[J]. Network: Computation in Neural Systems, 1996, 7(4): 671-685.
|
[11] |
SKAGGS W, KNIERIM J, KUDRIMOTI H, et al. A model of the neural basis of the rat's sense of direction[J]. Advances in Neural Information Processing Systems, 1994, 7: 173-180.
|
[12] |
ZHANG K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory[J]. The Journal of Neuroscience, 1996, 16(6): 2112-2126.
|
[13] |
BASSETT J P, TAUBE J S. Neural correlates for angular head velocity in the rat dorsal tegmental nucleus[J]. The Journal of Neuroscience, 2001, 21(15): 5740-5751.
|
[14] |
MUIR G M, BROWN J E, CAREY J P, et al. Disruption of the head direction cell signal after occlusion of the semicircular canals in the freely moving chinchilla[J]. The Journal of Neuroscience, 2009, 29(46): 14521-14533.
|
[15] |
ROBINSON D. Integrating with neurons[J]. Annual Review of Neuroscience, 1989, 12: 33-45.
|
[16] |
STACKMAN R W, CLARK A S, TAUBE J S. Hippocampal spatial representations require vestibular input[J]. Hippocampus, 2002, 12(3): 291-303.
|
[17] |
STACKMAN R W, TAUBE J S. Firing properties of head direction cells in the rat anterior thalamic nucleus: dependence on vestibular input[J]. The Journal of Neuroscience, 1997, 17(11): 4349-4358.
|
[18] |
VALERIO S, TAUBE J S. Path integration: how the head direction signal maintains and corrects spatial orientation[J]. Nature Neuroscience, 2012, 15(10): 1445-1453.
|
[19] |
AJABI Z, KEINATH A T, WEI X X, et al. Population dynamics of head-direction neurons during drift and reorientation[J]. Nature, 2023, 615(7954): 892-899.
|
[20] |
KNIERIM J J, KUDRIMOTI H S, MCNAUGHTON B L. Interactions between idiothetic cues and external landmarks in the control of place cells and head direction cells[J]. Journal of Neurophysiology, 1998, 80(1): 425-446.
|
[21] |
YOGANARASIMHA D, YU X, KNIERIM J J. Head direction cell representations maintain internal coherence during conflicting proximal and distal cue rotations: comparison with hippocampal place cells[J]. The Journal of Neuroscience, 2006, 26(2): 622-631.
|
[22] |
ZUGARO M B, ARLEO A, BERTHOZ A, et al. Rapid spatial reorientation and head direction cells[J]. The Journal of Neuroscience, 2003, 23(8): 3478-3482.
|
[23] |
ZUGARO M B, BERTHOZ A, WIENER S I. Background, but not foreground, spatial cues are taken as references for head direction responses by rat anterodorsal thalamus neurons[J]. The Journal of Neuroscience, 2001, 21(14): RC154.
|
[24] |
ASUMBISA K, PEYRACHE A, TRENHOLM S. Flexible cue anchoring strategies enable stable head direction coding in both sighted and blind animals[J]. Nature Communications, 2022, 13: 5483.
|
[25] |
SARGOLINI F, FYHN M, HAFTING T, et al. Conjunctive representation of position, direction, and velocity in entorhinal cortex[J]. Science, 2006, 312(5774): 758-762.
|
[26] |
WILLS T J, CACUCCI F, BURGESS N, et al. Development of the hippocampal cognitive map in preweanling rats[J]. Science, 2010, 328(5985): 1573-1576.
|
[27] |
LANGSTON R F, AINGE J A, COUEY J J, et al. Development of the spatial representation system in the rat[J]. Science, 2010, 328(5985): 1576-1580.
|
[28] |
CALTON J L, TAUBE J S. Degradation of head direction cell activity during inverted locomotion[J]. The Journal of Neuroscience, 2005, 25(9): 2420-2428.
|
[29] |
STACKMAN R W, TULLMAN M L, TAUBE J S. Maintenance of rat head direction cell firing during locomotion in the vertical plane[J]. Journal of Neurophysiology, 2000, 83(1): 393-405.
|
[30] |
TAUBE J S, WANG S S, KIM S Y, et al. Updating of the spatial reference frame of head direction cells in response to locomotion in the vertical plane[J]. Journal of Neurophysiology, 2013, 109(3): 873-888.
|
[31] |
STACKMAN R W, TAUBE J S. Firing properties of rat lateral mammillary single units: head direction, head pitch, and angular head velocity[J]. The Journal of Neuroscience, 1998, 18(21): 9020-9037.
|
[32] |
SHINDER M E, TAUBE J S. Three-dimensional tuning of head direction cells in rats[J]. Journal of Neurophysiology, 2019, 121(1): 4-37.
|
[33] |
ANGELAKI D E, NG J, ABREGO A M, et al. A gravity-based three-dimensional compass in the mouse brain[J]. Nature Communications, 2020, 11: 1855.
|
[34] |
LAURENS J, KIM B, DICKMAN J D, et al. Gravity orientation tuning in macaque anterior thalamus[J]. Nature Neuroscience, 2016, 19(12): 1566-1568.
|
[35] |
FINKELSTEIN A, DERDIKMAN D, RUBIN A, et al. Three-dimensional head-direction coding in the bat brain[J]. Nature, 2015, 517(7533): 159-164.
|
[36] |
WANG R, WANG Y, XU X, et al. Brain works principle followed by neural information processing: a review of novel brain theory[J]. Artificial Intelligence Review, 2023, 56(1): 285-350.
|
[37] |
WANG Y, XU X, PAN X, et al. Grid cell activity and path integration on 2-D manifolds in 3-D space[J]. Nonlinear Dynamics, 2021, 104(2): 1767-1780.
|
[38] |
WANG Y, XU X, WANG R. Modeling the grid cell activity on non-horizontal surfaces based on oscillatory interference modulated by gravity[J]. Neural Networks, 2021, 141: 199-210.
|
[39] |
XU X, WANG Y, WANG R. The place cell activity in three-dimensional space generated by multiple grid cell inputs[J]. Nonlinear Dynamics, 2022, 108(2): 1719-1731.
|
[40] |
JEFFERY K J, WILSON J J, CASALI G, et al. Neural encoding of large-scale three-dimensional space: properties and constraints[J]. Frontiers in Psychology, 2015, 6: 927.
|
[41] |
PAGE H J I, WILSON J J, JEFFERY K J. A dual-axis rotation rule for updating the head direction cell reference frame during movement in three dimensions[J]. Journal of Neurophysiology, 2018, 119(1): 192-208.
|
[42] |
LAURENS J, ANGELAKI D E. A model-based reassessment of the three-dimensional tuning of head direction cells in rats[J]. Journal of Neurophysiology, 2019, 122(3): 1274-1287.
|
[43] |
LAURENS J, ANGELAKI D E. The brain compass: a perspective on how self-motion updates the head direction cell attractor[J]. Neuron, 2018, 97(2): 275-289.
|
[44] |
TAUBE J S, SHINDER M E. On the absence or presence of 3D tuned head direction cells in rats: a review and rebuttal[J]. Journal of Neurophysiology, 2020, 123(5): 1808-1827.
|
[45] |
IRIARTE-DÍAZ J, SWARTZ S M. Kinematics of slow turn maneuvering in the fruit bat cynopterus brachyotis[J]. Journal of Experimental Biology, 2008, 211(21): 3478-3489.
|
[46] |
BURAK Y, FIETE I R. Accurate path integration in continuous attractor network models of grid cells[J]. PLoS Computational Biology, 2009, 5(2): e1000291.
|
[47] |
MCNAUGHTON B L, BATTAGLIA F P, JENSEN O, et al. Path integration and the neural basis of the 'cognitive map'[J]. Nature Reviews Neuroscience, 2006, 7(8): 663-678.
|
[48] |
SAMSONOVICH A, MCNAUGHTON B L. Path integration and cognitive mapping in a continuous attractor neural network model[J]. The Journal of Neuroscience, 1997, 17(15): 5900-5920.
|
[49] |
程现军, 王毅泓, 王如彬. 默认模式网络与任务正网络之间相互拮抗的神经动力学分析[J]. 应用数学和力学, 2019, 40(2): 127-138.
CHENG Xianjun, WANG Yihong, WANG Rubin. Neurodynamic analysis of mutual antagonism between default mode networks and task-positive networks[J]. Applied Mathematics and Mechanics, 2019, 40(2): 127-138. (in Chinese)
|
[50] |
戎伟峰, 王如彬. 耳蜗毛细胞活动的神经动力学分析[J]. 应用数学和力学, 2019, 40(2): 139-149.
RONG Weifeng, WANG Rubin. Neurodynamic analysis of cochlear hair cell activity[J]. Applied Mathematics and Mechanics, 2019, 40(2): 139-149. (in Chinese)
|