Citation: | CHENG Xiang, PENG Zaiyun, YANG Xin, WEN Ming. Hadamard Well-Posedness in 2 Types of Set Optimization Problems[J]. Applied Mathematics and Mechanics, 2025, 46(7): 926-938. doi: 10.21656/1000-0887.450273 |
[1] |
KUROIWA D. Existence theorems of set optimization with set-valued maps[J]. Journal of Information and Optimization Sciences, 2003, 24 (1): 73-84.
|
[2] |
KHAN A A, TAMMER C, ZǍLINESCU C. Set-Valued Optimization: an Introduction With Applications[M]. Berlin, Heidelberg: Springer, 2015.
|
[3] |
PENG Z Y, CHEN X J, ZHAO Y B, et al. Painlevé-Kuratowski convergence of minimal solutions for set-valued optimization problems via improvement sets[J]. Journal of Global Optimization, 2023, 87 (2): 759-781.
|
[4] |
HAN Y, ZHANG K, HUANG N J. The stability and extended well-posedness of the solution sets for set optimization problems via the Painlevé-Kuratowski convergence[J]. Mathematical Methods of Operations Research, 2020, 91 (1): 175-196.
|
[5] |
HAN Y. Painlevé-Kuratowski convergences of the solution sets for set optimization problems with cone-quasiconnectedness[J]. Optimization, 2022, 71 (7): 2185-2208.
|
[6] |
LALITHA C S. External and internal stability in set optimization using gamma convergence[J]. Carpathian Journal of Mathematics, 2019, 35 (3): 393-406.
|
[7] |
邵重阳, 彭再云, 刘芙萍, 等. 改进集映射下参数广义向量拟平衡问题解映射的Berge下半连续性[J]. 应用数学和力学, 2020, 41 (8): 912-920.
SHAO Chongyang, PENG Zaiyun, LIU Fuping, et al. Berge lower semi-continuity of parametric generalized vector quasi-equilibrium problems under improvement set mappings[J]. Applied Mathematics and Mechanics, 2020, 41 (8): 912-920. (in Chinese)
|
[8] |
曾悦, 彭再云, 梁仁莉, 等. 自由支配集下近似平衡约束向量优化问题的稳定性研究[J]. 应用数学和力学, 2021, 42 (9): 958-967. doi: 10.21656/1000-0887.410244
ZENG Yue, PENG Zaiyun, LIANG Renli, et al. Stability of vector optimization problems under approximate equilibrium constraints via free-disposal sets[J]. Applied Mathematics and Mechanics, 2021, 42 (9): 958-967. (in Chinese) doi: 10.21656/1000-0887.410244
|
[9] |
GERTH C, WEIDNER P. Nonconvex separation theorems and some applications in vector optimization[J]. Journal of Optimization Theory and Applications, 1990, 67 (2): 297-320.
|
[10] |
PENG Z Y, PENG J W, LONG X J, et al. On the stability of solutions for semi-infinite vector optimization problems[J]. Journal of Global Optimization, 2018, 70 (1): 55-69.
|
[11] |
PENG Z Y, WANG X, YANG X M. Connectedness of approximate efficient solutions for generalized semi-infinite vector optimization problems[J]. Set-Valued and Variational Analysis, 2019, 27 (1): 103-118.
|
[12] |
KUROIWA D. Some duality theorems of set-valued optimization with natural criteria[C]//Proceedings of the International Conference on Nonlinear Analysis and Convex Analysis. Singapore: World Scientific, 1999: 221-228.
|
[13] |
HADAMARD J. Sur les problèmes aux dérivées partielles et leur signification physique[J]. Princeton University Bulletin, 1902, 13 : 49-52.
|
[14] |
TIKHONOV A N. On the stability of the functional optimization problem[J]. USSR Computational Mathematics and Mathematical Physics, 1966, 6 (4): 28-33.
|
[15] |
DONTCHEV A L, ZOLEZZI T. Well-Posed Optimization Problems, Lecture Notes in Mathematics[M]. Berlin: Springer, 1993.
|
[16] |
ANH L Q, KHANH P Q. Continuity of solution maps of parametric quasiequilibrium problems[J]. Journal of Global Optimization, 2010, 46 (2): 247-259.
|
[17] |
PENG Z Y, ZHAO Y B, YIU K F C, et al. Stability analysis for semi-infinite vector optimization problems under functional perturbations[J]. Numerical Functional Analysis and Optimization, 2022, 43 (9): 1027-1049.
|
[18] |
曾静, 彭再云, 张石生. 广义强向量拟平衡问题解的存在性和Hadamard适定性[J]. 应用数学和力学, 2015, 36 (6): 651-658. doi: 10.3879/j.issn.1000-0887.2015.06.009
ZENG Jing, PENG Zaiyun, ZHANG Shisheng. Existence and hadam ard well-posedness of solutions to generalized strong vector quasi-equilibrium problems[J]. Applied Mathematics and Mechanics, 2015, 36 (6): 651-658. (in Chinese) doi: 10.3879/j.issn.1000-0887.2015.06.009
|
[19] |
ZHANG W Y, LI S J, TEO K L. Well-posedness for set optimization problems[J]. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71 (9): 3769-3778.
|
[20] |
LI S J, ZHANG W Y. Hadamard well-posed vector optimization problems[J]. Journal of Global Optimization, 2010, 46 (3): 383-393.
|
[21] |
ZENG J, LI S J, ZHANG W Y, et al. Hadamard well-posedness for a set-valued optimization problem[J]. Optimization Letters, 2013, 7 (3): 559-573.
|
[22] |
LONG X J, PENG J W, PENG Z Y. Scalarization and pointwise well-posedness for set optimization problems[J]. Journal of Global Optimization, 2015, 62 (4): 763-773.
|
[23] |
GUPTA M, SRIVASTAVA M. Well-posedness and scalarization in set optimization involving ordering cones with possibly empty interior[J]. Journal of Global Optimization, 2019, 73 (2): 447-463.
|
[24] |
MIHOLCA M. Global well-posedness in set optimization[J]. Numerical Functional Analysis and Optimization, 2021, 42 (14): 1700-1717.
|
[25] |
GUPTA M, SRIVASTAVA M. Hadamard well-posedness and stability in set optimization[J]. Positivity, 2024, 28 (1): 7.
|
[26] |
PENG Z Y, LONG X J, WANG X F, et al. Generalized Hadamard well-posedness for infinite vector optimization problems[J]. Optimization, 2017, 66 (10): 1563-1575.
|
[27] |
DUY T Q. Hadamard well-posedness for a set optimization problem with an infinite number of constraints[J]. Optimization, 2024, 73 (5): 1625-1643.
|
[28] |
BERGE C. Topological Spaces[M]. London: Oliver and Boyd, 1963.
|
[29] |
AUBIN J P, EKELAND I. Applied Nonlinear Analysis[M]. New York: Wiley, 1984.
|
[30] |
GOPFERT A, RIAHI H, TAMMER C, et al. Variational Methods in Partially Ordered Spaces[M]. New York: Springer, 2003.
|
[31] |
LUC D T. Theory of Vector Optimization[M]. Berlin, Heidelberg: Springer, 1989.
|
[32] |
HERNÁNDEZ E, LÓPEZ R. About asymptotic analysis and set optimization[J]. Set-Valued and Variational Analysis, 2019, 27 (3): 643-664.
|