XIAO Wan-shen, XIE Chao, LIU You-wen. Interaction Between a Heat Dipole and a Circular Interfacial Crack[J]. Applied Mathematics and Mechanics, 2009, 30(10): 1143-1152. doi: 10.3879/j.issn.1000-0887.2009.10.002
Citation: XIAO Wan-shen, XIE Chao, LIU You-wen. Interaction Between a Heat Dipole and a Circular Interfacial Crack[J]. Applied Mathematics and Mechanics, 2009, 30(10): 1143-1152. doi: 10.3879/j.issn.1000-0887.2009.10.002

Interaction Between a Heat Dipole and a Circular Interfacial Crack

doi: 10.3879/j.issn.1000-0887.2009.10.002
  • Received Date: 2008-09-25
  • Rev Recd Date: 2009-09-01
  • Publish Date: 2009-10-15
  • The heat dipole consists of a heat source and a heatsink. The problem that an interfacial crack of a composite contains a circular inclusion under a heat dipole is investigated by using the analytic extension technique, generalized Liouville's theorem and Muskhelishvili boundary value theory. Temperature fields and stress fields are formulated, and then the effects of the temperature field and the inhomogeneity on the interfacial fracture are analyzed. As a numerical illustration, the thermal stress intensity factors of the in terfacial crack are presented for various material combinations and for different positions of the heat dipole. The characteristic of the in terfacial crack depends on the elasticity, thermal property of the composite and the condition of the dipole.
  • loading
  • [1]
    Raymond D, David M, Cheng H. Thermoelastic stress in the semi-infinite solid[J]. Journal of Applied Physics,1950,〖STHZ〗21(9): 931-933.
    [2]
    Zhu Z H, Muguid S A. On the thermoelastic stresses of multiple interacting inhomogencities[J].Int J Solids and Structures, 2000, 〖STHZ〗37(16): 2313-2330.
    [3]
    Muskhelishvili N L. Some Basic Problems of Mathematical Theory of Elasticity[M]. Leyden:Noordhoff, 1975.
    [4]
    Chao C K, Chang R C. Thermal interface crack problems in dissimilar anisotropic media[J]. Journal of Applied Physics,1992, 〖STHZ〗72(7): 2598-2604.
    [5]
    Qin Q-H. Thermoelectroelastic solution for elliptic inclusions and application to crack-inclusion problems[J]. Applied Mathematical Modelling,2000,〖STHZ〗25(1): 1-23.
    [6]
    肖万伸,魏刚.稳态温度场下螺旋位错与圆弧裂纹的交互作用[J].机械强度,2007,〖STHZ〗29(5): 779-783.
    [7]
    Pham C V, Hasebe N, Wang X F, et al. Interaction between a cracked hole and a line crack under uniform heat flux[J]. Int J Fract ,2005, 〖STHZ〗13(4): 367-384.
    [8]
    Hasebe N, Wang X F, Saito T, et al. Interaction between a rigid inclusion and a line crack under uniform heat flux[J]. International Journal of Solids and Structures, 2007, 〖STHZ〗44(7/8): 2426-2441.
    [9]
    Chao C K, Shen M H. On bonded circular inclusion in plane thermoelasticity[J]. ASME, J Appl Mech, 1997, 〖STHZ〗64(4): 1000-1004.
    [10]
    Chao C K, Tan C J. On the general solutions for annular problems with a point heat source[J]. Journal of Applied Mechanics,2000, 〖STHZ〗67(3): 511-518.
    [11]
    Rahman M. The axisymmetric contact problem of thermoelasticity in the presence of an internal heat source[J].International Journal of Engineering Science 2003, 〖STHZ〗41(16): 1899-1911.
    [12]
    Chao C K, Chen F M. Thermal stresses in an isotropic trimaterial interacted with a pair of point heat source and heat sink[J]. International Journal of Solids and Structures, 2004,〖STHZ〗41(22/23):6233-6247.
    [13]
    Hasebe N, Wang X F. Complex variable method for thermal stress problem[J]. Journal of Thermal Stresses,2005, 〖STHZ〗28(6/7):595-648.
    [14]
    Sih G C, Raris P C, Erdogan F. Crack-tip stress factors for plane extension and plane bending problem[J].Journal of Applied Mechanics,1962,〖STHZ〗29(1): 306-312.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1519) PDF downloads(728) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return