TANG Xu-hai, WU Sheng-chuan, ZHENG Chao, ZHANG Jian-hai. A Novel Virtual Node Method for Polygonal Elements[J]. Applied Mathematics and Mechanics, 2009, 30(10): 1153-1164. doi: 10.3879/j.issn.1000-0887.2009.10.003
Citation: TANG Xu-hai, WU Sheng-chuan, ZHENG Chao, ZHANG Jian-hai. A Novel Virtual Node Method for Polygonal Elements[J]. Applied Mathematics and Mechanics, 2009, 30(10): 1153-1164. doi: 10.3879/j.issn.1000-0887.2009.10.003

A Novel Virtual Node Method for Polygonal Elements

doi: 10.3879/j.issn.1000-0887.2009.10.003
  • Received Date: 2008-12-22
  • Rev Recd Date: 2009-09-03
  • Publish Date: 2009-10-15
  • A novel polygonal finite element method (PFEM), which is based on partition of unity, was proposed and named as virtual node method (VNM). To test the perform ance of present method, intensive numerical examples were carried out for solid mechanic problems. With polynomial form, virtual node method achieves better results than that of traditional PFEM, including Wachspress method and mean value method in standard patch test Compared with standard triangular FEM, virtual node method can achieve better accuracy. With the ability to construct shape function on polygonal elements, virtual node method provides greater flexibility in mesh generation. Therefore, several fracture problems were studied to demonstrate poten tialim plemen tation. With the advantage of virtual node method, convenien trefinement and remeshing strategy are applied.
  • loading
  • [1]
    Wachspress E L. A Rational Finite Element Basis[M]. New York: Academic Press, 1975.
    [2]
    Tabarraei A,Sukumar N. Adaptive computations on conforming quadtree meshes[J]. Finite Elements in Analysis and Design, 2005, 41(7/8): 686-702. doi: 10.1016/j.finel.2004.08.002
    [3]
    Sukumar N, Malsch E A. Recent advances in the construction of polygonal finite element interpolants[J]. Archives of Computational Methods in Engineering, 2006,13(1): 129-163. doi: 10.1007/BF02905933
    [4]
    Floater M S. Mean value coordinates[J]. Computer Aided Geometric Design, 2003, 20(1): 19-27. doi: 10.1016/S0167-8396(03)00002-5
    [5]
    Melenk J M, Babuska I. The partition of unity finite element method: basic theory and applications[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1/4): 289-314. doi: 10.1016/S0045-7825(96)01087-0
    [6]
    Rajendran S, Zhang B R.A “FE-meshfree”QUAD4 element based on partition of unity[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 197(1/4): 128-147. doi: 10.1016/j.cma.2007.07.010
    [7]
    Liu G R, Gu Y T. A point interpolation method for two dimensional solid[J]. International Journal for Numerical Methods in Engineering, 2001, 50(4): 937-951. doi: 10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X
    [8]
    Zheng C,Tang X H, Zhang J H, et al. A novel mesh-free poly-cell Galerkin method[J]. Acta Mechanica Sinica, 2009,25(4): 517-527. doi: 10.1007/s10409-009-0239-5
    [9]
    Zheng C, Wu S C, Tang X H, et al. A meshfree poly-cell Galerkin (MPG) approach for problems of elasticity and fracture[J]. Computer Modelling in Engineering & Sciences, 2008, 38(2): 149-178.
    [10]
    Strang G, Fix G. An Analysis of the Finite Element Method[M]. Engle-wood Cliffs, New Jersey: Prentice-Hall, 1973.
    [11]
    Zienkiewicz O C, Taylor R L. The Finite Element Method[M]. 5th Ed. Oxford, UK: Butterworth Heinemann, 2000.
    [12]
    Mark S Shephard, Marcel K Georges. Automatic three-dimensional mesh generation by the finite octree technique[J]. International Journal for Numerical Methods in Engineering, 1991, 32(4): 709-749. doi: 10.1002/nme.1620320406
    [13]
    Timoshenko S P, Goodier J N. Theory of Elasticity[M]. 3rd Ed. New York: McGraw, 1970.
    [14]
    Roark R J, Young W C. Formulas for Stress and Strain[M]. New York: McGraw, 1975.
    [15]
    Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
    [16]
    Moes N, Dolbow J, Belyschko T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Method in Engineering, 1999, 46 (1): 131-150. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
    [17]
    Aliabadi M H, Rooke D P, Cartwright D J. Mixed-mode Bueckner weight functions using boundary element analysis[J]. International Journal of Fracture, 1987, 34(2): 131-147. doi: 10.1007/BF00019768
    [18]
    Bouchard P O, Bay F, Chastel Y, et al. Crack propagation modeling using an advanced remeshing technique[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 189(3): 723-742 doi: 10.1016/S0045-7825(99)00324-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1479) PDF downloads(932) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return