XIANG Jia-wei, CHEN Xue-feng, LI Xi-kui. Numerical Solution of Poisson Equation by Using Wavelet Bases of Hermite Cubic Splines on the Interval[J]. Applied Mathematics and Mechanics, 2009, 30(10): 1243-1250. doi: 10.3879/j.issn.1000-0887.2009.10.012
 Citation: XIANG Jia-wei, CHEN Xue-feng, LI Xi-kui. Numerical Solution of Poisson Equation by Using Wavelet Bases of Hermite Cubic Splines on the Interval[J]. Applied Mathematics and Mechanics, 2009, 30(10): 1243-1250.

# Numerical Solution of Poisson Equation by Using Wavelet Bases of Hermite Cubic Splines on the Interval

##### doi: 10.3879/j.issn.1000-0887.2009.10.012
• Rev Recd Date: 2009-08-23
• Publish Date: 2009-10-15
• A new wavelet-based finite element method was proposed for solving Poisson equation. The wave let bases of Hermite cubic splines on the in terval were employed as the multi-scale in terpo lating basis for finite element analysis. The lifting scheme of wavele-tbased finite element method was discussed in details. For the orthogral characteristic of the wavelet bases with respect to the given inner product, the correspond ing multi-scale finite element equation will be decoupled across scales to tally or partially and be suited for nesting approx mi ation. Some num erica l exam p les ind icate that the p roposed method has higher efficiency and precision in solving Poisson equation.
•  [1] Canuto C, Tabacco A, Urban K. The wavelet element method part I: construction and analysis[J]. Applied and Computational Harmonic Analysis, 1999, 6(1):1-52. [2] Canuto C, Tabacco A, Urban K. The wavelet element method part II: realization and additional feature in 2D and 3D[J]. Applied and Computational Harmonic Analysis, 2000, 8(2): 123-165. [3] Cohen A. Numerical Analysis of Wavelet Method[M]. Elsevier: Amsterdam, 2003, 20-29. [4] 周又和, 王记增, 郑晓静. 小波伽辽金有限元法在梁板结构中的应用[J]. 应用数学和力学, 1998, 19(8): 697-706. [5] Chen X F, He Z J, Xiang J W, Li B. A dynamic multiscale lifting computation method using Daubechies wavelet[J]. Journal of Computational and Applied Mathematics, 2006, 188(2): 228-245. [6] Xiang J W, Chen X F, He Z J, et al. The construction of 1D wavelet finite elements for structural analysis[J]. Computational Mechanics, 2007, 40(2): 325-339. [7] Xiang J W, Chen X F, He Z J, et al. A new wavelet-based thin plate element using B-spline wavelet on the interval[J]. Computational Mechanics, 2008, 41(2): 243-255. [8] Xiang J W, Chen X F, Yang L F, et al. A class of wavelet-based flat shell elements using B-spline wavelet on the interval and its applications[J]. CMES-Computer Modeling in Engineering and Sciences, 2008, 23(1):1-12. [9] 梅树立, 陆启韶, 金俐，等. 偏微分方程的区间小波自适应精细积分法[J]. 应用数学和力学, 2005, 26(3): 364-371. [10] 金坚明, 薛鹏翔, 徐应祥，等. 具有紧支撑的非张量积形式二维小波有限元[J]. 应用数学和力学, 2006, 27(12): 1673-1686. [11] 贺英, 韩波. 流体饱和多孔隙介质波动方程小波有限差分法[J]. 应用数学和力学, 2008; 29(11): 1495-1504. [12] Basu P K, Jorge A B, Badri S, et al. Higher-order modeling of continua by finite-element, boundary-element, Meshless, and wavelet methods[J]. Computers and Mathematics With Applications. 2003, 46(1): 15-33. [13] Jia R Q, Liu S T. Wavelet bases of Hermite cubic splines on the interval[J]. Advances in Computational Mathematics, 2006, 25(1/3): 23-39. [14] Quak E, Weyrich N. Decomposition and reconstruction algorithms for spline wavelets on a bounded interval[J]. Applied and Computational Harmonic Analysis, 1994, 1(2): 217-231. [15] Dahmen W, Kurdila A, Oswald P. Multiscale Wavelet for Partial Differential Equations[M]. San Diego：Academic Press，1997, 23-27. [16] Pavel K, Anath F, Pinhas Z, et al. Mechanically based models adaptive refinement for B-spline finite element[J]. International Journal for Numerical Methods in Engineering, 2003, 57(8):1145-1175. doi: 10.1002/nme.717

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142