| Citation: | HUANG Feng-hui, GUO Bo-ling. General Solution for a Class of Time Fractional Partial Differential Equation[J]. Applied Mathematics and Mechanics, 2010, 31(7): 781-790. doi: 10.3879/j.issn.1000-0887.2010.07.003 | 
	                | [1] | 
					 Podlubny I.Fractional Differential Equations[M].San Diego: Academic Press, 1999. 
					
					 | 
			
| [2] | 
					 Gorenflo R, Luchko Y, Mainardi F. Wright function as scale-invariant solutions of the diffusion-wave equation[J]. J Comp Appl Math, 2000, 118(1/2): 175-191. doi:  10.1016/S0377-0427(00)00288-0 
					
					 | 
			
| [3] | 
					 Mainardi F, Paradisi P, Gorenflo R.Probability distributions generated by fractional diffusion equations[C]Kertesz J, Kondor I. Econophysics: an Emerging Science.Dordrecht: Kluwer Academic Publishers, 1998. 
					
					 | 
			
| [4] | 
					 Mainardi F, Luchko Y, Pagnini G.The fundamental solution of the space-time fractional diffusion equation[J].Fractional Calculus and Applied Analysis, 2001, 4(2):153-192. 
					
					 | 
			
| [5] | 
					 Wyss W. The fractional diffusion equation[J]. J Math Phys, 1986, 27(11):2782-2785. doi:  10.1063/1.527251 
					
					 | 
			
| [6] | 
					 Chen J, Liu F, Anh V.Analytical solution for the time-fractional telegraph equation by the method of separating variables[J]. J Math Anal Appl, 2008, 338(2):1364-1377. doi:  10.1016/j.jmaa.2007.06.023 
					
					 | 
			
| [7] | 
					 Agrawal O P.Solution for a fractional diffusion-wave equation defined in a bounded domain[J]. Nonlinear Dynamics, 2002, 29(1/4):145-155. doi:  10.1023/A:1016539022492 
					
					 | 
			
| [8] | 
					 Gorenflo R, Mainardi F. Fractional calculus: integral and differential equations of fractional order[C]Carpinteri A, Mainardi F. Fractals and Fractional Calculus in Continuum Mechanics. New York: Springer,1997: 223-276. 
					
					 |