| Citation: | J. C. Song. Phragmén-Lindel-f and Continuous Dependence Type Results in a Stokes Flow[J]. Applied Mathematics and Mechanics, 2010, 31(7): 835-842. doi: 10.3879/j.issn.1000-0887.2010.07.008 | 
	                | [1] | 
					 Ansorge R. Mathematical Models of Fluiddynamics[M]. Weinheim: Wiley-VCH, 2003:118. 
					
					 | 
			
| [2] | 
					 LIN Chang-hao, Payne L E. The influence of domain and diffusivity perturbations on the decay end effects in heat conduction[J]. SIAM J Math Anal, 1994, 25(5): 1241-1258. doi:  10.1137/S003614109223355X 
					
					 | 
			
| [3] | 
					 LIN Chang-hao, Payne L E. Phragmén-Lindelf type results for second order quasilinear parabolic equation in R2[J]. Z Angew Math Phys, 1994, 45(2): 294-311. doi:  10.1007/BF00943507 
					
					 | 
			
| [4] | 
					 LIN Chang-hao, Payne L E. A Phragmén-Lindelf alternative for a class of quasilinear second order parabolic problems[J]. Differential and Integral Equations, 1995, 8(3): 539-551. 
					
					 | 
			
| [5] | 
					 Flavin J N, Knops R J, Payne L E. Asymptotic behaviour of solutions to semi-linear elliptic equations on the half-cylinder[J]. Z Angew Math Phys, 1992, 43(3): 405-421. doi:  10.1007/BF00946237 
					
					 | 
			
| [6] | 
					 Horgan C O, Payne L E. Phragmén-Lindelf type results for harmonic functions with nonlinear boundary conditions[J]. Arch Rational Mech Anal, 1993, 122(2): 123-144. doi:  10.1007/BF00378164 
					
					 | 
			
| [7] | 
					 Payne L E, Song J C. Phragmén-Lindelf and continuous dependence type results in generalized heat conduction[J]. Z Angew Math Phys, 1996, 47(4): 527-538. doi:  10.1007/BF00914869 
					
					 | 
			
| [8] | 
					 Horgan C O. Recent developments concerning Saint-Venant’s principle: an update[J]. Appl Mech Rev, 1989, 42: 295-303. doi:  10.1115/1.3152414 
					
					 | 
			
| [9] | 
					 Horgan C O. Recent developments concerning Saint-Venant’s principle: a second update[J]. Appl Mech Rev, 1996, 49: 101-111. doi:  10.1115/1.3101961 
					
					 | 
			
| [10] | 
					 Horgan C O, Knowles J K. Recent developments concerning Saint-Venant’s principle[C]Hutchinson J W. Advances in Applied Mechanics. New York: Academic Press, Vol 23, 1983:179. 
					
					 | 
			
| [11] | 
					 LIN Chang-hao. Spatial decay estimates and energy bounds for the Stokes flow equation[J]. SAACM, 1992, 2(3): 249-262. 
					
					 | 
			
| [12] | 
					 LIN Chang-hao, Payne L E. Spatial decay bounds in the channel flow of an incompressible viscous fluid[J]. Mathematical Models & Methods in Applied Sciences, 2004, 14(6): 795-818. 
					
					 | 
			
| [13] | 
					 宋 J C. 平面Stokes流动中改良的空间衰减限[J]. 应用数学和力学, 2009, 30(7): 777-782. 
					
					 | 
			
| [14] | 
					 Horgan C O, Wheeler L T. Spatial decay estimates for the Navier-Stokes equations with application to the problem of entry flow[J]. SIAM J Appl Math, 1978, 35(1): 97-116. doi:  10.1137/0135008 
					
					 | 
			
| [15] | 
					 Song J C. Decay estimates for steady magnetohydrodynamic pipe flow[J]. Nonlinear Analysis, 2003, 54(6): 1029-1044. doi:  10.1016/S0362-546X(03)00124-X 
					
					 |