J. C. Song. Phragmén-Lindel-f and Continuous Dependence Type Results in a Stokes Flow[J]. Applied Mathematics and Mechanics, 2010, 31(7): 835-842. doi: 10.3879/j.issn.1000-0887.2010.07.008
Citation: J. C. Song. Phragmén-Lindel-f and Continuous Dependence Type Results in a Stokes Flow[J]. Applied Mathematics and Mechanics, 2010, 31(7): 835-842. doi: 10.3879/j.issn.1000-0887.2010.07.008

Phragmén-Lindel-f and Continuous Dependence Type Results in a Stokes Flow

doi: 10.3879/j.issn.1000-0887.2010.07.008
  • Received Date: 2009-10-12
  • Rev Recd Date: 2010-04-01
  • Publish Date: 2010-07-15
  • The asymptotic behavior of end effects for a Stokes flow defined on a three-dimensional semi-infinite cylinder was investigated. With homogeneous Dirichlet conditions of the velocity on the lateral surface of the cylinder, it is shown that solutions either grow exponentially or decay exponentially in the distance from the finite end of the cylinder. In the latter case the effect of perturbing the equation parameters is also investigated.
  • loading
  • [1]
    Ansorge R. Mathematical Models of Fluiddynamics[M]. Weinheim: Wiley-VCH, 2003:118.
    [2]
    LIN Chang-hao, Payne L E. The influence of domain and diffusivity perturbations on the decay end effects in heat conduction[J]. SIAM J Math Anal, 1994, 25(5): 1241-1258. doi: 10.1137/S003614109223355X
    [3]
    LIN Chang-hao, Payne L E. Phragmén-Lindelf type results for second order quasilinear parabolic equation in R2[J]. Z Angew Math Phys, 1994, 45(2): 294-311. doi: 10.1007/BF00943507
    [4]
    LIN Chang-hao, Payne L E. A Phragmén-Lindelf alternative for a class of quasilinear second order parabolic problems[J]. Differential and Integral Equations, 1995, 8(3): 539-551.
    [5]
    Flavin J N, Knops R J, Payne L E. Asymptotic behaviour of solutions to semi-linear elliptic equations on the half-cylinder[J]. Z Angew Math Phys, 1992, 43(3): 405-421. doi: 10.1007/BF00946237
    [6]
    Horgan C O, Payne L E. Phragmén-Lindelf type results for harmonic functions with nonlinear boundary conditions[J]. Arch Rational Mech Anal, 1993, 122(2): 123-144. doi: 10.1007/BF00378164
    [7]
    Payne L E, Song J C. Phragmén-Lindelf and continuous dependence type results in generalized heat conduction[J]. Z Angew Math Phys, 1996, 47(4): 527-538. doi: 10.1007/BF00914869
    [8]
    Horgan C O. Recent developments concerning Saint-Venant’s principle: an update[J]. Appl Mech Rev, 1989, 42: 295-303. doi: 10.1115/1.3152414
    [9]
    Horgan C O. Recent developments concerning Saint-Venant’s principle: a second update[J]. Appl Mech Rev, 1996, 49: 101-111. doi: 10.1115/1.3101961
    [10]
    Horgan C O, Knowles J K. Recent developments concerning Saint-Venant’s principle[C]Hutchinson J W. Advances in Applied Mechanics. New York: Academic Press, Vol 23, 1983:179.
    [11]
    LIN Chang-hao. Spatial decay estimates and energy bounds for the Stokes flow equation[J]. SAACM, 1992, 2(3): 249-262.
    [12]
    LIN Chang-hao, Payne L E. Spatial decay bounds in the channel flow of an incompressible viscous fluid[J]. Mathematical Models & Methods in Applied Sciences, 2004, 14(6): 795-818.
    [13]
    宋 J C. 平面Stokes流动中改良的空间衰减限[J]. 应用数学和力学, 2009, 30(7): 777-782.
    [14]
    Horgan C O, Wheeler L T. Spatial decay estimates for the Navier-Stokes equations with application to the problem of entry flow[J]. SIAM J Appl Math, 1978, 35(1): 97-116. doi: 10.1137/0135008
    [15]
    Song J C. Decay estimates for steady magnetohydrodynamic pipe flow[J]. Nonlinear Analysis, 2003, 54(6): 1029-1044. doi: 10.1016/S0362-546X(03)00124-X
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1452) PDF downloads(734) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return