YI Zhi-jian, GU Jian-yi, HE Xiao-bing, MA Ying-hua, YANG Qing-guo, PENG Kai, HUANG Feng, HUANG Zong-ming. Elastic-Plastic Analysis of an Antiplane Crack Near the Crack Surface Region[J]. Applied Mathematics and Mechanics, 2010, 31(7): 853-859. doi: 10.3879/j.issn.1000-0887.2010.07.010
Citation: YI Zhi-jian, GU Jian-yi, HE Xiao-bing, MA Ying-hua, YANG Qing-guo, PENG Kai, HUANG Feng, HUANG Zong-ming. Elastic-Plastic Analysis of an Antiplane Crack Near the Crack Surface Region[J]. Applied Mathematics and Mechanics, 2010, 31(7): 853-859. doi: 10.3879/j.issn.1000-0887.2010.07.010

Elastic-Plastic Analysis of an Antiplane Crack Near the Crack Surface Region

doi: 10.3879/j.issn.1000-0887.2010.07.010
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-05-21
  • Publish Date: 2010-07-15
  • The elastic-plastic stress distribution and the elastic-plastic boundary configuration near the crack surface region are sign ificant but hard to obtain by means of conventional analysis. The crack line analysis method was developed through considering the crack surface as an extension of the crack line. The stresses in the plastic zone, the length and the unit normal vector of the elastic-plastic boundary near the crack surface region were obtained for an antiplane crack in an elastic-perfectly plastic solid. The usual small scale yielding assumptions have been abandoned during the analysis.
  • loading
  • [1]
    Achenbach J D, Li Z L. Plane stress crack line fields for crack growth in an elastic-perfectly plastic material[J]. Engineering Fracture Mechanics, 1984, 20(3): 534-544.
    [2]
    GUO Quan-xin, LI Ke-rong. Plastic deformation ahead of a plane stress tensile crack growth in an elastic-perfectly plastic solid[J]. Engineering Fracture Mechanics, 1987, 28(2): 139-146. doi: 10.1016/0013-7944(87)90209-8
    [3]
    YI Zhi-jian. The new and analytical solution for model Ⅲ crack in an elastic-perfectly plastic material[J]. Engineering Fracture Mechanics, 1992, 42(5): 833-840. doi: 10.1016/0013-7944(92)90064-L
    [4]
    YI Zhi-jian. The most recent solutions of near crack line fields for mode Ⅲ cracks[J]. Engineering Fracture Mechanics, 1994, 47(1): 147-155. doi: 10.1016/0013-7944(94)90245-3
    [5]
    YI Zhi-jian, WANG Shi-jie, WU Heng-li. Precise elastic-plastic analysis of crack line field for mode II plane stain crack[J]. International Journal of Fracture, 1996, 80(4): 353-363. doi: 10.1007/BF00018512
    [6]
    YI Zhi-jian, WANG Shi-jie and WANG Xiang-jian. Precise solutions of elastic-plastic crack line fields for cracked plate loaded by antiplane point forces[J]. Engineering Fracture Mechanics, 1997, 57(1): 75-83. doi: 10.1016/S0013-7944(97)00003-9
    [7]
    易志坚, 赵朝华, 杨庆国, 彭凯,黄宗明. Ⅲ型裂纹弹塑性场在裂纹线附近匹配方程的一般形式[J]. 应用数学和力学,2009, 30(5): 515-524.
    [8]
    吴承平,王成. 裂纹面任意点受反平面集中力时裂纹线场的弹塑性分析 [J]. 应用数学和力学, 1996, 17(12): 1059-1064.
    [9]
    王成, 张录坤. 有限宽板裂纹在面受两对反平面集中力时裂纹线场的弹塑性分析[J]. 应用数学和力学, 1998, 19(6): 513-520.
    [10]
    王成, 吴承平. 偏心裂纹板在裂纹面受两对反平面点力的弹塑性解析解[J]. 应用数学和力学, 2003, 24(7): 691-698.
    [11]
    WANG Jian-hua, ZHOU Xiao-ping. Near crack line elastic-plastic analysis for an infinite plate loaded by two pairs of point tensile forces[J]. Mechanics Research Communication, 2004, 31(4): 415-420. doi: 10.1016/j.mechrescom.2003.10.006
    [12]
    Chitaley A D, McClintock F A. Elastic-plastic mechanics of steady crack growth under antiplane shear[J]. Journal of the Mechanics and Physics of Solids, 1971, 19(3): 147-163. doi: 10.1016/0022-5096(71)90025-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1301) PDF downloads(816) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return