ZHENG Yan, HUANG Jian-hua. Stochastic Stability of FitzHugh-Nagumo Systems Perturbed by Gaussian White Noise[J]. Applied Mathematics and Mechanics, 2011, 32(1): 11-21. doi: 10.3879/j.issn.1000-0887.2011.01.002
Citation: ZHENG Yan, HUANG Jian-hua. Stochastic Stability of FitzHugh-Nagumo Systems Perturbed by Gaussian White Noise[J]. Applied Mathematics and Mechanics, 2011, 32(1): 11-21. doi: 10.3879/j.issn.1000-0887.2011.01.002

Stochastic Stability of FitzHugh-Nagumo Systems Perturbed by Gaussian White Noise

doi: 10.3879/j.issn.1000-0887.2011.01.002
  • Received Date: 2010-07-25
  • Rev Recd Date: 2010-11-26
  • Publish Date: 2011-01-15
  • Stochastic stability of FitzHugh-Nagumo systems perturbed by Gaussian white noise was studied.The dynamics of stochastic FitzHugh-Nagumo systems was studied first,which is essential in establishing the existence and uniqueness of their invariant measures,which mix exponentially.Then,asymptotic behavior of invariant measures when the size of noise gets to zero was investigated.
  • loading
  • [1]
    Has’minskii R Z.Stochastic Stability of Differential Equations[M].Dordrecht: Kluwer Academic Publishers, 1981.
    [2]
    Kifer Y.Random Perturbations of Dynamical Systems[M]. Boston: Birkhuser, 1988.
    [3]
    Baladi V.Positive Transfer Operators and Decay of Correlations[M]. Advanced Series in Nonlinear Dynamics. Vol 16. New Jersey: World Scientific Publishing Co, Inc, 2000.
    [4]
    Blank M.Discreteness and Continuity in Problems of Chaotic Dynamics[M].Transl Math Monographs. Vol 116. Providence,RI, United States: American Mathematical Society, 1997.
    [5]
    Viana M.Stochastic Dynamics of Deterministic Systems[M].Brazil: Col Bras de Matemti ̄ca, 1997.
    [6]
    Babin A, Vishik M.Attractors of Evolution Equations[M]. Amsterdam: North-Holland, 1992.
    [7]
    Martine M. Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems[J].SIAM J Math Anal,1989, 20(4): 816-844. doi: 10.1137/0520057
    [8]
    Rodriguez-Bernal A, Wang B. Attractor for partly dissipative reaction diffusion systems in Rn[J].J Math Anal Appl, 2000, 252(2): 790-803. doi: 10.1006/jmaa.2000.7122
    [9]
    Robinson J.Infinite-Dimensional Dynamical Systems, an Introduction to Dissipative Parabolic PDEs and Theory of Global Attractors[M]. Cambridge: Cambridge University Press, 2001.
    [10]
    Teman R.Infinite-Dimensional Dynamical Systems in Mechanics and Physics[M]. New York: Springer-Verlag, 1988.
    [11]
    杨美华, 钟承奎. 无界域上部分耗散系统解的全局存在性和唯一性[J].兰州大学学报(自然科学版), 2006, 42(5): 130-136.(YANG Mei-hua, ZHONG Cheng-kui. The existence and uniqueness of the solutions for partly dissipative reaction diffusion systems in Rn[J].J Lanzhou University(Natural Sciences), 2006, 42(5): 130-136.(in Chinese))
    [12]
    Magalha~es P, Coayla-Tern E.Weak solution for stochastic FitzHugh-Nagumo equations[J].Stochastic Analysis and Applications, 2003, 21(2): 443-463. doi: 10.1081/SAP-120019294
    [13]
    Huang J, Shen W. Global attractors for partly dissipative random/stochastic reaction diffusion systems[J].International Journal of Evolution Equations, 2009, 4(4): 383-412.
    [14]
    Da Prato G, Zabczyk J. Ergodicity for Infinite Dimensional Systems[M]. Cambridge:Cambridge University Press, 1996.
    [15]
    Da Prato G, Zabczyk J. Convergence to equilibrium for classical and quantum spin systems[J].Probability Theory and Ralat Fields, 1995, 103(4): 529-552. doi: 10.1007/BF01246338
    [16]
    Peszat S, Zabczyk J.Stochastic Partial Differential Equations With Lévy Noise[M]. Cambridge:Cambridge University Press, 2007.
    [17]
    Vleck E, Wang B. Attractors for lattice FitzHugh-Nagumo systems[J].Physica D, 2005, 212(3/4): 317-336. doi: 10.1016/j.physd.2005.10.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1367) PDF downloads(752) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return