XIANG Qian, WU Song-ping, LEE Chun-xuan, CAO Ning. Low-Diffusion Preconditioning Scheme for Numerical Simulation of Low-Speed Flows Past Airfoil[J]. Applied Mathematics and Mechanics, 2011, 32(5): 579-586. doi: 10.3879/j.issn.1000-0887.2011.05.008
Citation: XIANG Qian, WU Song-ping, LEE Chun-xuan, CAO Ning. Low-Diffusion Preconditioning Scheme for Numerical Simulation of Low-Speed Flows Past Airfoil[J]. Applied Mathematics and Mechanics, 2011, 32(5): 579-586. doi: 10.3879/j.issn.1000-0887.2011.05.008

Low-Diffusion Preconditioning Scheme for Numerical Simulation of Low-Speed Flows Past Airfoil

doi: 10.3879/j.issn.1000-0887.2011.05.008
  • Received Date: 2011-01-25
  • Rev Recd Date: 2011-02-21
  • Publish Date: 2011-05-15
  • The reconditioning technique addresses the stiffness of low Mach number flow, while the stability was poor. Based on the conventional preconditioning method of Roe's scheme, a new low-diffusion scheme was proposed. An adjustable parameter was introduced to control the numerical dis-sipation in the new scheme, especially the over dissipation in the boundary layer and extremely low speed region. Numerical simulations of low Mach and low Reynolds number flows over a cylinder, low Mach and high Reynolds number flows over NACA0012 and NH02-18 airfoils were performed to validate the new scheme. All results of the three test cases are found to agree well with experiment data, demonstrating the applicability of the suggested scheme to low Mach number flow simulations.
  • loading
  • [1]
    Hansen M O L. Aerodynamics of Wind Turbines[M]. London, Sterling, VA:Earthscan, 2008.
    [2]
    Turkel E. Preconditioned methods for solving the incompressible and low speed compressible equations [J]. Journal of Computational Physics, 1987, 72(2): 277-298. doi: 10.1016/0021-9991(87)90084-2
    [3]
    Merkle C L, Sullivan J Y, Buelow P E O, Venkateswaran S. Computation of flows with arbitrary equations of state[J]. AIAA Journal, 1998, 36(4): 515-521. doi: 10.2514/2.424
    [4]
    Choi D, Merkle C L. Application of time-iterative schemes to incompressible flow[J]. AIAA Journal, 1985, 28(10): 1518-1524.
    [5]
    黄典贵. 基于Roe格式的可压与不可压流的统一计算方法[J].应用数学和力学, 2006, 27(6): 669-674. (HUANG Dian-gui. Unified computation of flow with compressible and incompressible fluid based on Roe’s scheme[J].Applied Mathematics and Mechanics(English Edition), 2006, 27(6) :757-763.)
    [6]
    Venkateswaran S, Li D, Merkle C L. Influence of stagnation regions on preconditioned solutions at low speeds[C]41st Aerospace Sciences Meeting & Exhibit, Reno, NV; United States; 6-9 Jan 2003: 2003-2435.
    [7]
    李雪松, 徐建中, 顾春伟. 预处理方法与大涡模拟工程应用[J]. 中国科学, G辑, 2009, 39(1): 83-90. (LI Xue-song, XU Jian-zhong, GU Chun-wei. Preconditioning method on the application of LES[J]. Sci China, Ser G-Phys Mech Astron, 2009, 39(1): 83-90.(in Chinese))
    [8]
    Fornberg B. A numerical study of steady viscous flow past a circular cylinder[J]. J Fluid Mech, 1980, 98: 819-855. doi: 10.1017/S0022112080000419
    [9]
    Ladson Charles L. Effects of independent variation of Mach and reynolds numbers on the low-speed aerodynamic characteristics of the NACA0012 airfoil section[R]. Washington, District of Columbia. National Aeronautics and Space Administration. TM-4074, 1988.
    [10]
    Ramsay R, Hoffmann M J, Gregorek G M. Effects of grit roughness and pitch oscillations on the S809 airfoil[R]. Report Number(s) NREL / TP-442-7817. National Renewable Energy Lab, Golden, CO (United States), 1995. doi: 10.2172/205563.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1664) PDF downloads(839) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return