Reza Maddahian, Bijan Farhanieh, Bahar Firoozabadi. Turbulent Flow in Converging Nozzles Part Ⅰ——Boundary Layer Solution[J]. Applied Mathematics and Mechanics, 2011, 32(5): 608-622. doi: 10.3879/j.issn.1000-0887.2011.05.011
Citation: Reza Maddahian, Bijan Farhanieh, Bahar Firoozabadi. Turbulent Flow in Converging Nozzles Part Ⅰ——Boundary Layer Solution[J]. Applied Mathematics and Mechanics, 2011, 32(5): 608-622. doi: 10.3879/j.issn.1000-0887.2011.05.011

Turbulent Flow in Converging Nozzles Part Ⅰ——Boundary Layer Solution

doi: 10.3879/j.issn.1000-0887.2011.05.011
  • Received Date: 2010-06-11
  • Rev Recd Date: 2010-12-22
  • Publish Date: 2011-05-15
  • In this research the boundary layer integral method was used to investigate the development of turbulent swirling flow at the entrance region of a conical nozzle. The governing equations in the spherical coordinate system were simplified with the boundary layer assumptions and integrated through the boundary layer. The resulting sets of differential equations were then solved by the forth-order Adams predicto-rcorrector method. The free vortex and uniform velocity profiles were applied for tangential and axial velocities at the inlet region respectively. Due to the lack of experimental data for swirling flow in converging nozzles, the developed model was validated against the numerical simulations. The results of numerical simulations demonstrate the capability of the analytical model in predicting boundary layer parameters, such as boundary layer growth, shear rate and boundary layer thickness, as well as the swirl intensity decay rate for different cone angles. The proposed method introduces a simple and robust procedure in order to investigate the boundary layer parameters inside converging geometries.
  • loading
  • [1]
    Algifri A H, Bhardwaj R K, Rao Y V N. Eddy viscosity in decaying swirl flow in a pipe[J]. Applied Scientific Research, 1988,45(4):287-302. doi: 10.1007/BF00457063
    Najafi A F. Investigation of internal turbulent swirling flow, single phase and two phase flow[D]. Ph D dissertation. Sharif University of Technology, 2004:24-30.
    Gul H. Enhancement of heat transfer in a circular tube with tangential swirl generators[J]. Experimental Heat Transfer, 2006, 19(2): 81-93. doi: 10.1080/08916150500318422
    Chang F, Dhir V K. Mechanisms of heat transfer enhancement and slow decay of swirl in tubes using tangential injection[J]. International Journal of Heat and Fluid Flow, 1995, 16(2): 78-87. doi: 10.1016/0142-727X(94)00016-6
    Thambu R, Babinchak B T, Ligrani P M, Hedlund C R, Moon H K, Glezer B. Flow in a simple swirl chamber with and without controlled inlet forcing[J]. Experiments in Fluids, 1999, 26(4): 347-357. doi: 10.1007/s003480050298
    Zaherzade N H, Jagadish B S. Heat transfer in decaying swirl flow[J]. International Journal of Heat and Mass Transfer, 1975, 18(7/8): 941-944. doi: 10.1016/0017-9310(75)90187-8
    Yilmaz M, Yapici S, Jomakli O, Sara O N. Energy correlation of heat transfer and enhancement efficiency in decaying swirl flow[J]. Heat and Mass Transfer, 2002, 38(4/5): 351-358. doi: 10.1007/s002310100207
    Steenbergen W, Voskamp J. The rate of decay of swirl in turbulent pipe flow[J]. Flow Measurement and Instrumentation, 1998, 9(2): 67-78. doi: 10.1016/S0955-5986(98)00016-8
    Cakmak G, Yildiz C. The influence of the injectors with swirling flow generating on the heat transfer in the concentric heat exchanger[J]. International Communication in Heat and Mass Transfer, 2007, 34(6): 728-739. doi: 10.1016/j.icheatmasstransfer.2007.03.007
    Martemianov S, Okulov V L. On heat transfer enhancement in swirl pipe flows[J]. International Journal of Heat and Mass Transfer, 2004, 47(10/11): 2379-2393. doi: 10.1016/j.ijheatmasstransfer.2003.11.005
    Taylor G I. The boundary layer in the converging nozzle of swirl atomizer[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1950, 3(2): 129-139. doi: 10.1093/qjmam/3.2.129
    Weber H E. The boundary layer inside a conical surface due to swirl[J]. Journal of Applied Mechanics, 1956, 23: 587-592.
    Kreith F, Margolis D. Heat transfer and friction in turbulent vortex flow[J]. Applied Scientific Research, 1959, 8(1): 457-473. doi: 10.1007/BF00411769
    Rochino A, Lavan Z. Analytical investigations of incompressible turbulent swirling flow in stationary ducts[J]. Journal of Applied Mechanics, 1969, 36: 151-158. doi: 10.1115/1.3564602
    Akiyama T, Ikeda M. Fundamental study of the fluid mechanics of swirling pipe flow with air suction[J]. Industrial and Engineering Chemistry Process Design and Development, 1986, 25(4): 907-913. doi: 10.1021/i200035a012
    Yajnik K S, Subbaiah M V. Experiments on swirling turbulent flows—part 1: similarity in swirling flows[J]. Journal of Fluid Mechanics, 1973, 60(4): 665-687. doi: 10.1017/S0022112073000406
    Kitoh O. Experimental study of turbulent swirling flow in a straight pipe[J]. Journal of Fluid Mechanics, 1991, 225: 445-479. doi: 10.1017/S0022112091002124
    Algifri A H, Bhardwaj R K, Rao Y V N. Turbulence measurement in decaying swirl flow in a pipe[J]. Applied Scientific Research, 1988, 45(3): 233-250. doi: 10.1007/BF00384689
    Alekseenko S V, Kuibin P A, Okulov V L, Shtork S I. Helical vortices in swirl flow[J]. Journal of Fluid Mechanics, 1999, 382: 195-243. doi: 10.1017/S0022112098003772
    Lucca-Negro O, O′Dohery T. Vortex breakdown: a review[J]. Progress in Energy and Combustion Science, 2001, 27(4): 431-481. doi: 10.1016/S0360-1285(00)00022-8
    Talbot L. Laminar swirling pipe flow[J]. Journal of Applied Mechanics, 1954,21: 1-7.
    Kreith F, Sonju K. The decay of a turbulent swirl in a pipe[J]. Journal of Fluid Mechanics, 1965, 22(2): 257-271. doi: 10.1017/S0022112065000733
    Yu S C M, Kitoh O. A general formulation for the decay of swirling motion along a straight pipe[J]. International Communications in Heat and Mass Transfer, 1994, 21(5): 719-728. doi: 10.1016/0735-1933(94)90073-6
    Harris M J R. The decay of swirl in a pipe[J]. International Journal of Heat and Fluid Flow, 1994, 15(3): 212-217. doi: 10.1016/0142-727X(94)90040-X
    Najafi A F, Saidi M H, Sadeghipour M S, Souhar M. Boundary layer solution for the turbulent swirling decay flow through a fixed pipe: SBR at the inlet[J]. International Journal of Engineering Science, 2005, 43(1/2): 107-120. doi: 10.1016/j.ijengsci.2004.08.010
    Maddahian R, Kebriaee A, Farhanieh B, Firoozabadi B. Analytical investigation of boundary layer growth and swirl intensity decay rate in a pipe[J]. Archive of Applied Mechanics, 2010, 81(4): 489-501.
    Burden R L, Faires J D. Numerical Analysis[M]. 7th ed. Belmont: Brooks/Cole, 2000: 297-300.
    Ashraf A I. Comprehensive study of internal flow field and linear and nonlinear instability of an annular liquid sheet emanating from an atomizer[D]. Ph D dissertation. University of Cincinnati, 2006: 32-49.
    Schlichting H. Boundary Layer Theory[M]. 7th ed. New York: McGraw-Hill, 1973: 47-223.
    Farhanieh B, Davidson L. Manual of CALC-BFC[M]. Gothenburg, Sweden: Chalmers University of Technology, 1991.
    Maddahian R, Farhanieh B. Numerical investigation of thermo fluid mechanics of differentially heated rotating tubes[J]. Heat Transfer Engineering, 2010, 31(3): 201-211. doi: 10.1080/01457630903304376
    Patankar S V. Numerical Heat Transfer and Fluid Flow[M]. Washington DC:Taylor & Francis, 1980: 113-135.
    Rhie C M, Chow L W. Numerical study of the turbulent flow past an airfoil with trailing edge separation[J]. AIAA J, 1983, 21(11): 1527-1532.
    Slack M D, Prasad R O, Bakker A, Boysan F. Advances in cyclone modeling using unstructured grids[J]. Chemical Engineering Research and Design, 2000, 78(8): 1098-1104. doi: 10.1205/026387600528373
    De Souza J, Silveria-Neto A. Preliminary results of large eddy simulations of a hydrocyclone[J]. Thermal Engineering, 2004, 3(2): 168-173.
    Cullivan J C, Williams R A, Cross C R. Understanding the hydrocyclone separator through computational fluid dynamics[J]. Chemical Engineering Research and Design, 2003, 81(4): 455-466. doi: 10.1205/026387603765173718
    Cullivan J C. Williams R A, Dyakowski T, Cross C R. New understanding of a hydrocyclone flow field and separation mechanism from computational fluid dynamics[J]. Minerals Engineering, 2004, 17(5): 651-660. doi: 10.1016/j.mineng.2004.04.009
    Nowakowski A F, Dyakowski T. Investigation of swirling flow structure in hydrocyclones[J]. Chemical Engineering Research and Design, 2003, 81(8): 862-873. doi: 10.1205/026387603322482103
    Launder B E, Reece G J, Ro di W. Progress in the development of a Reynolds-stress turbulence closure[J]. Journal of Fluid Mechanics, 1975, 68(3): 537-566. doi: 10.1017/S0022112075001814
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1732) PDF downloads(811) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint