Abdul-Majid Wazwaz. Multiple-Front Waves for Extended Form of Modified Kadomtsev-Petviashvili Equation[J]. Applied Mathematics and Mechanics, 2011, 32(7): 821-825. doi: 10.3879/j.issn.1000-0887.2011.07.006
Citation: Abdul-Majid Wazwaz. Multiple-Front Waves for Extended Form of Modified Kadomtsev-Petviashvili Equation[J]. Applied Mathematics and Mechanics, 2011, 32(7): 821-825. doi: 10.3879/j.issn.1000-0887.2011.07.006

Multiple-Front Waves for Extended Form of Modified Kadomtsev-Petviashvili Equation

doi: 10.3879/j.issn.1000-0887.2011.07.006
  • Received Date: 2010-12-31
  • Rev Recd Date: 2011-04-14
  • Publish Date: 2011-07-15
  • An extended form of the modified Kadom tsev-Petviashvili (mKP) equation was investigated. The simp lified form of Hirotas bilinear method established by Herem an and Nuseir was employed for a reliable study. Multiple-front waves solutions were formally derived for this equation, and hence to the mKP equation. That also shows that the extension terms do not kill the in tegrability of the mKP equation.
  • loading
  • [1]
    SUN Zhi-yuan, GAO Yi-tian, YU Xin, MENG Xiang-hua, LIU Ying. Inelastic interactions of the multiple-front waves for the modified Kadomtsev-Petviashvili equation in fluid dynamics, plasma physics and electrodynamics[J]. Wave Motion, 2009, 46(8): 511-521. doi: 10.1016/j.wavemoti.2009.06.014
    [2]
    Bo1 R, JI Lin. A new (2+1)-dimensional integrable equation[J]. Communications in Theoretical Physics, 2009, 51(1): 13-16. doi: 10.1088/0253-6102/51/1/03
    [3]
    Mulase M. Solvability of the super KP equation and a generalization of the Birkhoff decomposition[J]. Inventiones Mathematicae, 1988, 92(1): 1-46. doi: 10.1007/BF01393991
    [4]
    Ablowitz M J, Clarkson P A. Solitons Nonlinear Evolution Equations and Inverse Scattering[M]. Cambridge: Cambridge University Press, 1991.
    [5]
    Clarkson P A. The Painlevé property, a modified Boussinesq equation and a modified Kadomtsev-Petviashvili equation[J].Physica D: Nolinear Phenomena, 1986, 19(3): 447-450. doi: 10.1016/0167-2789(86)90071-0
    [6]
    WANG Song, TANG Xiao-yan, LOU Sen-yue. Soliton fission and fusion: Burgers equation and Sharma-Tasso-Olver equation[J]. Chaos, Solitons and Fractals, 2004, 21(1): 231-239. doi: 10.1016/j.chaos.2003.10.014
    [7]
    Das G C, Sarma J. Evolution of solitary waves in multicomponent plasmas[J]. Chaos, Solitons and Fractals, 1998, 9(6): 901-911. doi: 10.1016/S0960-0779(97)00170-7
    [8]
    Hirota R, Ito M. Resonance of solitons in one dimension[J]. Journal of Physical Society of Japan, 1983, 52(3): 744-748. doi: 10.1143/JPSJ.52.744
    [9]
    Hirota R. The Direct Method in Soliton Theory[M]. Cambridge: Cambridge University Press,2004.
    [10]
    Hietarinta J. A search for bilinear equations passing Hirota’s three-soliton condition—Ⅱ: mKdV-type bilinear equations[J]. Journal of Mathematical Physics, 1987, 28(9): 2094-2101. doi: 10.1063/1.527421
    [11]
    Hereman W, Nuseir A. Symbolic methods to construct exact solutions of nonlinear partial differential equations[J]. Mathematics and Computers in Simulation, 1997, 43(1): 13-27. doi: 10.1016/S0378-4754(96)00053-5
    [12]
    Wazwaz A M. Multiple kink solutions and multiple singular kink solutions for the (2+1)-dimensional Burgers equations[J]. Applied Mathematics Computation, 2008, 204(2): 817-823. doi: 10.1016/j.amc.2008.07.025
    [13]
    Wazwaz A M. Multiple soliton solutions and multiple singular soliton solutions for the (3+1)-dimensional Burgers equations[J]. Applied Mathematics Computation, 2008, 204(2): 942-948. doi: 10.1016/j.amc.2008.08.004
    [14]
    Wazwaz A M. Multiple kink solutions and multiple singular kink solutions for two systems of coupled Burgers’ type equations[J].Communications in Nonlinear Science and Numerical Simulations, 2009, 14(7): 2962-2970. doi: 10.1016/j.cnsns.2008.12.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1392) PDF downloads(837) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return