XU Li, WENG Pei-fen. Rotor Wake Capture Improvement Based on High Order Spatially Accurate Schemes and Chimera Grids[J]. Applied Mathematics and Mechanics, 2011, 32(12): 1461-1471. doi: 10.3879/j.issn.1000-0887.2011.12.006
Citation: XU Li, WENG Pei-fen. Rotor Wake Capture Improvement Based on High Order Spatially Accurate Schemes and Chimera Grids[J]. Applied Mathematics and Mechanics, 2011, 32(12): 1461-1471. doi: 10.3879/j.issn.1000-0887.2011.12.006

Rotor Wake Capture Improvement Based on High Order Spatially Accurate Schemes and Chimera Grids

doi: 10.3879/j.issn.1000-0887.2011.12.006
  • Received Date: 2011-06-16
  • Rev Recd Date: 2011-10-24
  • Publish Date: 2011-12-15
  • A high-order upwind scheme was developed to capture vortex wake of a helicopter rotor in hover based on chimera grids. An improved fifth-order weighted essentially non-oscillatory (WENO) scheme was adopted to interpolate higher-order left and right states across a cell interface with the Roe Riemann solver updating inviscid flux, and was compared with the monotone upwind scheme for scalar conservation laws (MUSCL). For profitably capturing the wake and enforcing period boundary condition, the computation regions of flows were discretized by using structured chimera grids composed of a fine rotor grid and a cylindrical background grid. In the background grid, the mesh cells located in the wake regions were refined after the solution reaches an approximate convergence. The optimized cylindrical mesh was attained by three remeshings. Considering the interpolation characteristic of WENO scheme, three layers of hole boundary and interpolation boundary were searched. The performance of the schemes was investigated in a transonic flow and a subsonic flow around hovering rotor. The results reveal that the present approach has the great capabilities to capture the vortex wake with high resolution, and WENO scheme has much lower numerical dissipation in comparison with MUSCL scheme.
  • loading
  • [1]
    Egolf T. Recent rotor wake simulation and modeling studies at United Technologies Corporation[R]. AIAA paper 2000-115, 2000.
    He C, Zhao J. Modeling rotor wake dynamics with viscous vortex particle method[J]. AIAA Journal, 2009, 47(4): 902-915. doi: 10.2514/1.36466
    Harris R E, Sheta E F, Habchi S D. An efficient adaptive Cartesian vorticity transport solver for rotorcraft flowfield analysis[R]. AIAA paper 2010-1072, 2010.
    Wagner S. On the numerical prediction of rotor wakes using linear and non-linear methods[R]. AIAA paper 2000-0111, 2000.
    Dietz M, Keler M, Kramer E, Wagner S. Tip vortex conservation on a helicopter main rotor using vortex-adapted chimera grids[J]. AIAA Journal, 2007, 45(8): 2062-2074. doi: 10.2514/1.28643
    Caradonna F X, Directorate A, Aviation U S, Command M. Developments and challenges in rotorcraft aerodynamics[R]. AIAA paper 2000-0109, 2000.
    Hariharan N, Sankar L N. High-order essentially nonoscillatory schemes for rotary-wing wake computations[J]. Journal of Aircraft, 2004, 41(2): 258-267. doi: 10.2514/1.9320
    Hariharan N. High order accurate numerical convection of vortices across overset interfaces[R]. AIAA paper 2005-1263, 2005.
    Usta E, Wake B E, Egolf T A, Sankar L N. Application of a symmetric total variation diminishing scheme to aerodynamics and aeroacoustics of rotors[C]Presented at the American Helicopter Society 57th Annual Forum. Washington D C, May 9-11, 2001.
    Kim H, Williams M, Lyrintzis A. Improved method for rotor wake capturing[J]. Journal of Aircraft, 2002, 39(5): 794-803. doi: 10.2514/2.3025
    Borges R, Carmona M, Costa B, Don W S. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227(6): 3191-3211. doi: 10.1016/j.jcp.2007.11.038
    Liu X D, Osher S, Chan T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1): 200-212. doi: 10.1006/jcph.1994.1187
    Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228. doi: 10.1006/jcph.1996.0130
    Yoon S, Jameson A. Lower-upper symmetric Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1998, 26(9): 1025-1026.
    Chen R, Wang Z. Fast, block lower-upper symmetric Gauss-Seidel scheme for arbitrary grids[J]. AIAA Journal, 2000, 38(12): 2238-2245. doi: 10.2514/2.914
    Baldwin B S, Lomax H. Thin layer approximation and algebraic model for separated turbulent flow[R]. AIAA paper 78-0257, 1978.
    Roe P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372. doi: 10.1016/0021-9991(81)90128-5
    Chen X, Zha G C, Yang M T. Numerical simulation of 3-D wing flutter with fully coupled fluidstructural interaction[J]. Computers and Fluids, 2007, 36(5): 856-867. doi: 10.1016/j.compfluid.2006.08.005
    Harten A. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 49(3): 357-393. doi: 10.1016/0021-9991(83)90136-5
    Xu L, Yang A M, Guang P, Weng P F. Numerical experiments using one high-resolution scheme for unsteady inviscid compressible flows[J]. Acta Aerodynamica Sinica, 2009, 27(5): 602-607.
    Titarev V A, Toro E F. WENO schemes based on upwind and centred TVD fluxes[J]. Computers and Fluids, 2005, 34(6): 705-720. doi: 10.1016/j.compfluid.2004.05.009
    Caradonna F X, Tung C. Experimental and analytical studies of a model helicopter rotor in hover[R]. NASA TM 81232, 1981.
    Strawn R C, Barth T J. A finite-volume Euler solver for computing rotary-wing aerodynamics on unstructured meshes[J]. Journal of the American Helicopter Society, 1993, 38: 61-67. doi: 10.4050/JAHS.38.61
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1401) PDF downloads(728) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint