Zahra Mortazavinia, Amin Zare, Alireza Mehdizadeh. Effects of Renal Artery Stenosis in a Realistic Model of Abdominal Aorta and Renal Arteries Incorporating FSI and Pulsatile Non-Newtonian Blood Flow[J]. Applied Mathematics and Mechanics, 2012, 33(2): 164-176. doi: 10.3879/j.issn.1000-0887.2012.02.003
Citation: Zahra Mortazavinia, Amin Zare, Alireza Mehdizadeh. Effects of Renal Artery Stenosis in a Realistic Model of Abdominal Aorta and Renal Arteries Incorporating FSI and Pulsatile Non-Newtonian Blood Flow[J]. Applied Mathematics and Mechanics, 2012, 33(2): 164-176. doi: 10.3879/j.issn.1000-0887.2012.02.003

Effects of Renal Artery Stenosis in a Realistic Model of Abdominal Aorta and Renal Arteries Incorporating FSI and Pulsatile Non-Newtonian Blood Flow

doi: 10.3879/j.issn.1000-0887.2012.02.003
  • Received Date: 2011-07-20
  • Rev Recd Date: 2011-10-11
  • Publish Date: 2012-02-15
  • The effects of renal artery stenosis (RAS) on blood flow and vessel walls were investigated. Pulsatile blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT-scan images was simulated, incorporating fluid-structure interaction (FSI). In addition to the investigation of RAS effects on wall shear stress and displacement of vessel wall, it was determined that RAS lead to decrease in renal mass flow which may cause the activation of the renin-angiotension system and result in severe hypertension.
  • loading
  • [1]
    Moayeri M S ,Zendehbudi G R. Effects of elastic property of the wall on flow characteristics through arterial stenoses[J]. J Biomech, 2003, 36(4): 525-535.
    [2]
    Misra J C, Chakravarty S. Flow in arteries in the presence of stenosis[J]. J Biomech, 1986, 19(11): 907-918.
    [3]
    Yang W, Zhu T. Switching-toughening of ferroelectrics subjected to electric fields[J]. J Mech Phys Solids, 1998, 46(2): 291-311.
    [4]
    Young D F, Tsai F Y. Flow characteristics in models of arterial stenosis: Ⅱ unsteady flow[J]. J Biomech, 1973, 6(5): 547-559.
    [5]
    Zendehboodi G R, Moayeri M S. Comparison of physiological and simple pulsatile flows through stenosed arteries[J]. J Biomech , 1999, 32(9): 959-965.
    [6]
    Lee K W, Xu X Y. Modeling of flow and wall behaviour in a mildly stenosed tube[J]. J Med Eng Phys, 2002, 24(9): 575-586.
    [7]
    Ohja M, Cobbold R S C, Johnston K W, Hummel R L. Pulsatile flow through constricted tubes: an experimental investigation using photochromic tracer methods[J]. J Fluid Mech, 1989, 203(4): 173-197.
    [8]
    Chan W, Ding Y, Tu J Y. Modeling of non-Newtonian blood flow through a stenosed artery incorporating fluid-structure interaction[J]. ANZIAM J, 2007, 47(1): 507-523.
    [9]
    Li M X, Beech-Brandt J J, John L R, Hoskins P R, Easson W J. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses[J]. J Biomech, 2007, 40(16): 3715-3724.
    [10]
    Rindt C C M, van Steenhoven A A. Unsteady flow in a rigid three-dimensional model of the carotid artery bifurcation[J]. J Biomech, 1996, 118(1): 90-96.
    [11]
    Taylor C A, Hughes T J R, Zarins C K. Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis[J]. Ann Biomed Eng, 1998, 26(7): 975-987.
    [12]
    Olufsen M S, Peskin C S, Kim W Y, Pedersen E M, Nadim A, Larsen J. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions[J]. Ann Biomed Eng, 2000, 28(11): 1281-1299.
    [13]
    Shipkowitz T, Rodgers V G J, Frazin L J, Chandran K B. Numerical study on the effect of secondary flow in the human aorta on local shear stresses in abdominal aortic branches[J]. J Biomech, 2000, 33(6): 717-728.
    [14]
    Kim H J, Vignon-Clementel I E, Feinstein J A, Figueroa C A, La Disa J F, Jansen K E, Taylor C A. On coupling a lumped parameter heart model and a three dimensional finite element aorta model[J]. Ann Biomed Eng, 2009, 37(11): 2153-2169.
    [15]
    Derlex F H, Schalekamp M A. Renal artery stenosis and hypertension[J]. Lancet, 1994, 344: 237-240.
    [16]
    Mount P, Kumar S K, MacGinley R, Mantha M, Roberts M, Mangos G. Inhibition of the renin-angiotensin system[J]. Nephrology, 2010, 15(s1): 234-243.
    [17]
    White C J. Catheter-based therapy for atherosclerotic renal artery stenosis[J]. Circulation, 2006, 113(11): 1464-1473.
    [18]
    Kagadis G C, Skouras E D, Bourantas G C, Paraskeva C A, Katsanos K, Karnabatidis D, Nikiforidis G C. Computational representation and hemodynamic characterization of in vivo acquired severe stenotic renal artery geometries using turbulence modeling[J]. J Med Eng Phys, 2008, 30(5): 647-660.
    [19]
    Westenberg J J, Wasser M N, van der Geest R J, Pattynama P M, de Roos A, Vanderschoot J, Reiber J H C. Variations in blood flow waveforms in stenotic renal arteries by 2D phase-contrast cine MRI[J]. J Magn Reson Imag, 1998, 8(3): 590-597.
    [20]
    Schoenberg S O, Bock M, Kallinowski F, Just A. Correlation of hemodynamic impact and morphologic degree of renal artery stenosis in a canine model[J]. J Am Soc Nephrol, 2000, 11(12): 2190-2198.
    [21]
    Ganong W F. Review of Medical Physiology[M]. California: Appleton & Lange, 1988.
    [22]
    Lai W M, Rubin D, Krempl E. Introduction to Continuum Mechanics[M]. Burlington: Elsevier Science, 1999.
    [23]
    Yamamoto T, Ogasawara Y, Kimura A, Tanaka H, Hiramatsu O, Tsujioka K, Lever M J, Parker K H, Jones C J H, Caro C G, Kajiya F. Blood velocity profiles in the human renal artery by doppler ultrasound and their relationship to atherosclerosis[J]. Arterioscl Throm Vas,1996, 16(1): 172-177.
    [24]
    Walburn F J, Schneck D J. A constitutive equation for whole human blood[J]. J Biorheol, 1976, 13(3): 201-210.
    [25]
    Cho Y I, Kensey K R. Effects of the non-Newtonian viscosity of blood in flows in a diseased arterial vessel—part 1: steady flows[J]. J Biorheol, 1991, 28(3/4): 241-262.
    [26]
    Ballyk P D, Steinman D A, Etheir C R. Simulation of non-Newtonian blood flow in an end-to-side anastomosis[J]. J Biorheol, 1994, 31(5): 565-586.
    [27]
    Johnston B M, Johnston P R, Corney S, Kilpatrick D. Non-Newtonian blood flow in human right coronary arteries: steady state simulations[J]. J Biomech, 2004, 37(5): 709-720.
    [28]
    Giannakoulas G, Giannoglou G, Soulis J, Farmakis T, Papadopoulou S, Parcharidis G, Louridas G. A computational model to predict aortic wall stresses in patients with systolic arterial hypertension[J]. Med Hypotheses, 2005, 65(6): 1191-1195.
    [29]
    Fry D L. Acute vascular endothelial changes associated with increased blood velocity gradients[J]. Circ Res, 1968, 22(2): 165-197.
    [30]
    Ramstack J M, Zuckerman L, Mockros L F. Shear induced activation of platelets[J]. J Biomech, 1979, 12(2): 113-125.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1405) PDF downloads(698) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return