T.A.Angelov. On a Class of Metal-Forming Problems With Combined Hardening[J]. Applied Mathematics and Mechanics, 2012, 33(2): 231-239. doi: 10.3879/j.issn.1000-0887.2012.02.008
Citation: T.A.Angelov. On a Class of Metal-Forming Problems With Combined Hardening[J]. Applied Mathematics and Mechanics, 2012, 33(2): 231-239. doi: 10.3879/j.issn.1000-0887.2012.02.008

On a Class of Metal-Forming Problems With Combined Hardening

doi: 10.3879/j.issn.1000-0887.2012.02.008
  • Received Date: 2010-08-23
  • Rev Recd Date: 2011-11-20
  • Publish Date: 2012-02-15
  • A class of quasi-steady metalforming problems, with incompressible, rigidplastic, strain-rate dependent, isotropic and kinematic hardening material model and with nonlocal contact and Coulomb’s friction boundary conditions was considered. A coupled variational formulation was derived and by proving the convergence of a variable stiffness parameters method with time retardation, existence and uniqueness results were obtained.
  • loading
  • [1]
    Hill R. The Mathematical Theory of Plasticity[M]. Oxford: Oxford University Press, 1950.
    [2]
    Cristescu N D. Dynamic Plasticity[M]. Singapore: World Scientific Publishing Co Ltd, 2007.
    [3]
    Zienkiewicz O C. Flow formulation for numerical solution of forming processes[C]Pittman J F T, Zienkiewicz O C, Wood R D, Alexander J M. Numerical Analysis of Forming Processes. Chichester, UK: John Wiley & Sons, 1984: 1-44.
    [4]
    Korneev V G, Langer U. Approximate Solution of Plastic Flow Theory Problems[M]. Teubner Texte zur Mathematik, 65. Leipzig: Teubner, 1984.
    [5]
    Han W, Reddy B D. Plasticity: Mathematical Theory and Numerical Analysis[M]. New York: Springer-Verlag, 1999.
    [6]
    Angelov T A. Variational analysis of a rigid-plastic rolling problem[J]. Int J Eng Sci, 2004, 42(17/18): 1779-1792.
    [7]
    Angelov T A. Existence and uniqueness of the solution of a quasi-steady rolling problem[J]. Int J Eng Sci, 2006, 44(11/12): 748-756.
    [8]
    Angelov T A. Modelling and analysis of a class of metal-forming problems[J]. Adv Appl Math Mech, 2010, 2(6): 722-745.
    [9]
    Angelov T A. Modelling and numerical approach to a class of metal-forming problems—quasi-steady case[J]. Math Meth Appl Sci, 2011, 34(11): 1330-1338.
    [10]
    Glowinski R. Numerical Methods for Nonlinear Variational Problems[M]. Berlin: Springer-Verlag, 1984.
    [11]
    Duvaut G, Lions J-L. Inequalities in Mechanics and Physics[M]. Berlin: Springer-Verlag, 1976.
    [12]
    Kikuchi N, Oden J T. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods[M]. Philadelphia PA: SIAM, 1988.
    [13]
    Han W, Sofonea M. Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity[M]. Providence RI: AMS-Intl Press, 2002.
    [14]
    Shillor M, Sofonea M, Telega J J. Models and Variational Analysis of Quasistatic Contact[M]. Lecture Notes in Physics, 655. Berlin: Springer, 2004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1563) PDF downloads(731) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return