HUANG Wei-li, CAI Jian-le. Conformal Invariance for the Nonholonomic System of Chetaev’s Type With Variable Mass[J]. Applied Mathematics and Mechanics, 2012, 33(11): 1294-1303. doi: 10.3879/j.issn.1000-0887.2012.11.005
Citation: HUANG Wei-li, CAI Jian-le. Conformal Invariance for the Nonholonomic System of Chetaev’s Type With Variable Mass[J]. Applied Mathematics and Mechanics, 2012, 33(11): 1294-1303. doi: 10.3879/j.issn.1000-0887.2012.11.005

Conformal Invariance for the Nonholonomic System of Chetaev’s Type With Variable Mass

doi: 10.3879/j.issn.1000-0887.2012.11.005
  • Received Date: 2012-03-21
  • Rev Recd Date: 2012-06-21
  • Publish Date: 2012-11-15
  • Conformal invariance and conserved quantities for the nonholonomic system of Chetaev’s type with variable mass were studied. The conformal factor expressions were deduced. The necessary and sufficient conditions that the system’s conformal invariance would be Lie symmetry were obtained. The conformal invariance of weak and strong Lie symmetry for the system was given. And the system’s corresponding conserved quantities were derived. Lastly, an example was taken to illustrate the application of the result.
  • loading
  • [1]
    杨来伍, 梅凤翔. 变质量系统力学[M] . 北京:北京理工大学出版社,1989.(YANG Lai-wu, MEI Feng-xiang. Mechanics Variable Mass System[M]. Beijing: Beijing Institute of Technology Press, 1989.(in Chinese))
    [2]
    梅凤翔.李群和李代数对约束力学系统的应用[M].北京:科学出版社,1999.(MEI Feng-xiang. Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems[M]. Beijing:Science Press, 1999. (in Chinese))
    [3]
    赵跃宇, 梅凤翔. 力学系统的对称性与不变量[M]. 北京: 科学出版社, 1999.(ZHAO Yue-yu, MEI Feng-xiang. Symmetries and Invariants of Mechanical Systems[M]. Beijing: Science Press, 1999.(in Chinese))
    [4]
    梅凤翔.约束力学系统的对称性与守恒量[M]. 北京:北京理工大学出版社, 2004.(MEI Feng-xiang. Symmetries and Conserved Quantities of Constrained Mechanical Systems[M]. Beijing: Beijing Institute of Technology Press, 2004. (in Chinese))
    [5]
    罗绍凯, 张永发. 约束系统动力学研究进展[M]. 北京:科学出版社,2008.(LUO Shao-kai, ZHANG Yong-fa. Advances in the Study of Dynamics of Constrained Systems[M]. Beijing: Science Press, 2008. (in Chinese))
    [6]
    Fu J L, Chen B Y, Chen L Q. Noether symmetries of discrete nonholonomic dynamical systems[J]. Physics Letters A, 2009, 373(4): 409-412.
    [7]
    Wang P, Fang J H, Wang X M. Discussion on perturbation to weak Noether symmetry and adiabatic invariants for Lagrange systems[J]. Chinese Physics Letters, 2009, 26(3): 034501 doi: 10.1088/0256-307X/26/3/034501.
    [8]
    Fu J L, Chen L Q, Chen B Y. Noether-type theory for discrete mechanico-electrical dynamical systems with nonregular lattices[J]. Science China: Physics, Mechanics & Astronomy, 2010, 53(9): 1687-1698.
    [9]
    Xia L L, Shan L F. Weak Noether symmetry for a nonholonomic controllable mechanical system[J]. Chinese Physics B, 2010, 19(9): 090302 doi: 10.1088/1674-1056/19/9/090302.
    [10]
    Wang P. Perturbation to Noether symmetry and Noether adiabatic invariants of discrete mechanico-electrical systems[J]. Chinese Physics Letters, 2011, 28(4): 040203 doi: 10.1088/0256-307X/28/4/040203.
    [11]
    Mei F X. Lie symmetries and conserved quantities of Birkhoffian systems[J]. Chinese Science Bulletin, 1999, 44: 318-320.
    [12]
    LUO Shao-kai, JIA Li-qun. A set of Lie symmetrical conservation law for rotational relativistic Hamiltonian systems[J]. Communication in Theoretical Physics, 2003, 40(3): 265-268.
    [13]
    Fu J L, Chen B Y. Hojman conserved quantities and Lie symmetries of non-conservative systems[J]. Modern Physics Letters B, 2009, 23(10):1315-1322.
    [14]
    Zhou S, Fu H, Fu J L. Symmetry theories of Hamiltonian systems with fractional derivatives[J]. Science China: Physics, Mechanics & Astronomy, 2011, 54(10): 1847-1853.
    [15]
    Jiang W A, Li L, Li Z J, Luo S K. Lie symmetrical perturbation and a new type of non-Noether adiabatic invariants for disturbed generalized Birkhoffian systems[J]. Nonlinear Dynamics, 2012, 67(2): 1075-1081.
    [16]
    Mei F X. Form invariance of Lagrange system[J]. Journal of Beijing Institute of Technology, 2000, 9(2): 120-124.
    [17]
    Li H, Fang J H. Lie symmetry and Mei symmetry of a rotational relativistic system in phase space[J]. Chinese Physics, 2004, 13(8): 1187-1190.
    [18]
    贾利群, 郑世旺, 张耀宇. 事件空间中非Chetaev 型非完整系统的Mei对称性与Mei守恒量[J]. 物理学报,2007,56(10):5575-5579.(JIA Li-qun, ZHENG Shi-wang, ZHANG Yao-yu. Mei symmetry and Mei conserved quantity of nonholonomic systems of non-Chetaev’s type in  ̄event space[J]. Acta Physica Sinica, 2007, 56(10): 5575-5579.(in Chinese))
    [19]
    Xia L L, Zhao X L. Generalized Mei conserved quantity of Mei symmetry for mechanico-electrical systems with nonholonomic controllable constraints[J]. Chinese Physics Letters, 2009, 26(1): 010203 doi: 10.1088/0256-307X/26/1/010203.
    [20]
    贾利群, 解银丽, 罗绍凯. 相对运动动力学系统Appell方程Mei对称性导致的Mei守恒量[J]. 物理学报, 2011, 60(4): 040201.(JIA Li-qun, XIE Yin-li, LUO Shao-kai. Mei conserved quantity deduced from Mei symmetry of Appell equation in a dynamical system of relative motion[J]. Acta Physica Sinica, 2011, 60(4): 040201.(in Chinese))
    [21]
    Xu X J, Qin M C, Mei F X. Unified symmetry of holonomic mechanical systems[J]. Chinese Physics, 2005, 14(7): 1287-1289.
    [22]
    Wu H B, Mei F X. Symmetry of Lagrangians of holonomic systems in terms of quasi-coordinates[J]. Chinese Physics B, 2009, 18(8): 3145-3149.
    [23]
    Jiang W A, Luo S K. A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems[J]. Nonlinear Dynamics, 2012, 67(1): 475-482.
    [24]
    Xia L L, Li Y C, Hou Q B, Wang J. Unified symmetry of nonholonomic mechanical systems with variable mass[J]. Chinese Physics B, 2004, 15(5): 903-906.
    [25]
    Cui J C, Zhang Y Y, Yang X F, Jia L Q. Mei symmetry and Mei conserved quantity of Appell equations for avariable mass holonomic system[J]. Chinese Physics B, 2010, 19(3): 31-35.
    [26]
    Zhang M L, Sun X T, Wang X X, Xie Y L, Jia L Q. Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion[J]. Chinese Physics B, 2011, 20(11): 19-22.
    [27]
    Wu H B, Mei F X. Symmetry of Lagrangians of holonomic variable mass system[J]. Chinese Physics B, 2012, 21(6): 064501 doi: 10.1088/1674-1056/21/6/064501.
    [28]
    Galiullin A S, Gafarov G G, Malaishka R P, Khwan A M. Analytical Dynamics of Helmholtz, Birkhoff and Nambu Systems[M]. Moscow: UFN, 1997.
    [29]
    蔡建乐, 梅凤翔. Lagrange系统Lie点变换下的共形不变性与守恒量[J].物理学报, 2008, 57(9): 5369-5373.(CAI Jian-le, MEI Feng-xiang. Conformal invariance and conserved quantity of Lagrange systems under Lie point transformation[J]. Acta Physica Sinica, 2008, 57(9): 5369-5373.(in Chinese))
    [30]
    CAI Jian-le. Conformal invariance and conserved quantities of general holonomic systems[J]. Chinese Physics Letters, 2008, 25(5): 1523-1526.
    [31]
    Cai J L, Luo S K, Mei F X. Conformal invariance and conserved quantity of Hamilton systems[J]. Chinese Physics B, 2008, 17(9): 3170-3174.
    [32]
    Cai J L. Conformal invariance and conserved quantities of Mei symmetry for Lagrange systems[J]. Acta Physica Polonica A, 2009, 115(5): 854-856.
    [33]
    蔡建乐. 一般完整系统Mei对称性的共形不变性与守恒量[J] . 物理学报, 2009, 58(1): 22-27.(CAI Jian-le. Conformal invariance and conserved quantities of Mei symmetry for general holonomic systems[J]. Acta Physica Sinica, 2009, 58(1): 22-27.(in Chinese))
    [34]
    Cai J L. Conformal invariance and conserved quantity for the nonholonomic system of Chetaev’s type[J]. International Journal of Theoretical Physics, 2010, 49(1): 201-211.
    [35]
    He G, Mei F X. Conformal invariance and integration of first-order differential equations[J]. Chinese Physics B, 2008, 17(8): 2764-2766.
    [36]
    Luo Y P. Generalized conformal symmetries and its application of Hamilton systems[J]. International Journal of Theoretical Physics, 2009, 48: 2665-2671.
    [37]
    Luo Y P, Fu J L. Conformal invariance and Hojman conserved quantities for holonomic systems with quasi-coordinates[J]. Chinese Physics B, 2010, 19(9): 94-99.
    [38]
    Zhang Y. Conformal invariance and Noether symmetry, Lie symmetry of holonomic mechanical systems in event space[J]. Chinese Physics B, 2009, 18(11): 4636-4642.
    [39]
    Zhang M J, Fang J H, Lu K. Conformal invariance and conserved quantity of third-order Lagrange equations for non-conserved mechanical systems[J]. Chinese Physics B, 2009, 18 (
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2245) PDF downloads(1152) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return