Citation: | HUANG Wei-li, CAI Jian-le. Conformal Invariance for the Nonholonomic System of Chetaev’s Type With Variable Mass[J]. Applied Mathematics and Mechanics, 2012, 33(11): 1294-1303. doi: 10.3879/j.issn.1000-0887.2012.11.005 |
[1] |
杨来伍, 梅凤翔. 变质量系统力学[M] . 北京:北京理工大学出版社,1989.(YANG Lai-wu, MEI Feng-xiang. Mechanics Variable Mass System[M]. Beijing: Beijing Institute of Technology Press, 1989.(in Chinese))
|
[2] |
梅凤翔.李群和李代数对约束力学系统的应用[M].北京:科学出版社,1999.(MEI Feng-xiang. Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems[M]. Beijing:Science Press, 1999. (in Chinese))
|
[3] |
赵跃宇, 梅凤翔. 力学系统的对称性与不变量[M]. 北京: 科学出版社, 1999.(ZHAO Yue-yu, MEI Feng-xiang. Symmetries and Invariants of Mechanical Systems[M]. Beijing: Science Press, 1999.(in Chinese))
|
[4] |
梅凤翔.约束力学系统的对称性与守恒量[M]. 北京:北京理工大学出版社, 2004.(MEI Feng-xiang. Symmetries and Conserved Quantities of Constrained Mechanical Systems[M]. Beijing: Beijing Institute of Technology Press, 2004. (in Chinese))
|
[5] |
罗绍凯, 张永发. 约束系统动力学研究进展[M]. 北京:科学出版社,2008.(LUO Shao-kai, ZHANG Yong-fa. Advances in the Study of Dynamics of Constrained Systems[M]. Beijing: Science Press, 2008. (in Chinese))
|
[6] |
Fu J L, Chen B Y, Chen L Q. Noether symmetries of discrete nonholonomic dynamical systems[J]. Physics Letters A, 2009, 373(4): 409-412.
|
[7] |
Wang P, Fang J H, Wang X M. Discussion on perturbation to weak Noether symmetry and adiabatic invariants for Lagrange systems[J]. Chinese Physics Letters, 2009, 26(3): 034501 doi: 10.1088/0256-307X/26/3/034501.
|
[8] |
Fu J L, Chen L Q, Chen B Y. Noether-type theory for discrete mechanico-electrical dynamical systems with nonregular lattices[J]. Science China: Physics, Mechanics & Astronomy, 2010, 53(9): 1687-1698.
|
[9] |
Xia L L, Shan L F. Weak Noether symmetry for a nonholonomic controllable mechanical system[J]. Chinese Physics B, 2010, 19(9): 090302 doi: 10.1088/1674-1056/19/9/090302.
|
[10] |
Wang P. Perturbation to Noether symmetry and Noether adiabatic invariants of discrete mechanico-electrical systems[J]. Chinese Physics Letters, 2011, 28(4): 040203 doi: 10.1088/0256-307X/28/4/040203.
|
[11] |
Mei F X. Lie symmetries and conserved quantities of Birkhoffian systems[J]. Chinese Science Bulletin, 1999, 44: 318-320.
|
[12] |
LUO Shao-kai, JIA Li-qun. A set of Lie symmetrical conservation law for rotational relativistic Hamiltonian systems[J]. Communication in Theoretical Physics, 2003, 40(3): 265-268.
|
[13] |
Fu J L, Chen B Y. Hojman conserved quantities and Lie symmetries of non-conservative systems[J]. Modern Physics Letters B, 2009, 23(10):1315-1322.
|
[14] |
Zhou S, Fu H, Fu J L. Symmetry theories of Hamiltonian systems with fractional derivatives[J]. Science China: Physics, Mechanics & Astronomy, 2011, 54(10): 1847-1853.
|
[15] |
Jiang W A, Li L, Li Z J, Luo S K. Lie symmetrical perturbation and a new type of non-Noether adiabatic invariants for disturbed generalized Birkhoffian systems[J]. Nonlinear Dynamics, 2012, 67(2): 1075-1081.
|
[16] |
Mei F X. Form invariance of Lagrange system[J]. Journal of Beijing Institute of Technology, 2000, 9(2): 120-124.
|
[17] |
Li H, Fang J H. Lie symmetry and Mei symmetry of a rotational relativistic system in phase space[J]. Chinese Physics, 2004, 13(8): 1187-1190.
|
[18] |
贾利群, 郑世旺, 张耀宇. 事件空间中非Chetaev 型非完整系统的Mei对称性与Mei守恒量[J]. 物理学报,2007,56(10):5575-5579.(JIA Li-qun, ZHENG Shi-wang, ZHANG Yao-yu. Mei symmetry and Mei conserved quantity of nonholonomic systems of non-Chetaev’s type in  ̄event space[J]. Acta Physica Sinica, 2007, 56(10): 5575-5579.(in Chinese))
|
[19] |
Xia L L, Zhao X L. Generalized Mei conserved quantity of Mei symmetry for mechanico-electrical systems with nonholonomic controllable constraints[J]. Chinese Physics Letters, 2009, 26(1): 010203 doi: 10.1088/0256-307X/26/1/010203.
|
[20] |
贾利群, 解银丽, 罗绍凯. 相对运动动力学系统Appell方程Mei对称性导致的Mei守恒量[J]. 物理学报, 2011, 60(4): 040201.(JIA Li-qun, XIE Yin-li, LUO Shao-kai. Mei conserved quantity deduced from Mei symmetry of Appell equation in a dynamical system of relative motion[J]. Acta Physica Sinica, 2011, 60(4): 040201.(in Chinese))
|
[21] |
Xu X J, Qin M C, Mei F X. Unified symmetry of holonomic mechanical systems[J]. Chinese Physics, 2005, 14(7): 1287-1289.
|
[22] |
Wu H B, Mei F X. Symmetry of Lagrangians of holonomic systems in terms of quasi-coordinates[J]. Chinese Physics B, 2009, 18(8): 3145-3149.
|
[23] |
Jiang W A, Luo S K. A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems[J]. Nonlinear Dynamics, 2012, 67(1): 475-482.
|
[24] |
Xia L L, Li Y C, Hou Q B, Wang J. Unified symmetry of nonholonomic mechanical systems with variable mass[J]. Chinese Physics B, 2004, 15(5): 903-906.
|
[25] |
Cui J C, Zhang Y Y, Yang X F, Jia L Q. Mei symmetry and Mei conserved quantity of Appell equations for avariable mass holonomic system[J]. Chinese Physics B, 2010, 19(3): 31-35.
|
[26] |
Zhang M L, Sun X T, Wang X X, Xie Y L, Jia L Q. Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion[J]. Chinese Physics B, 2011, 20(11): 19-22.
|
[27] |
Wu H B, Mei F X. Symmetry of Lagrangians of holonomic variable mass system[J]. Chinese Physics B, 2012, 21(6): 064501 doi: 10.1088/1674-1056/21/6/064501.
|
[28] |
Galiullin A S, Gafarov G G, Malaishka R P, Khwan A M. Analytical Dynamics of Helmholtz, Birkhoff and Nambu Systems[M]. Moscow: UFN, 1997.
|
[29] |
蔡建乐, 梅凤翔. Lagrange系统Lie点变换下的共形不变性与守恒量[J].物理学报, 2008, 57(9): 5369-5373.(CAI Jian-le, MEI Feng-xiang. Conformal invariance and conserved quantity of Lagrange systems under Lie point transformation[J]. Acta Physica Sinica, 2008, 57(9): 5369-5373.(in Chinese))
|
[30] |
CAI Jian-le. Conformal invariance and conserved quantities of general holonomic systems[J]. Chinese Physics Letters, 2008, 25(5): 1523-1526.
|
[31] |
Cai J L, Luo S K, Mei F X. Conformal invariance and conserved quantity of Hamilton systems[J]. Chinese Physics B, 2008, 17(9): 3170-3174.
|
[32] |
Cai J L. Conformal invariance and conserved quantities of Mei symmetry for Lagrange systems[J]. Acta Physica Polonica A, 2009, 115(5): 854-856.
|
[33] |
蔡建乐. 一般完整系统Mei对称性的共形不变性与守恒量[J] . 物理学报, 2009, 58(1): 22-27.(CAI Jian-le. Conformal invariance and conserved quantities of Mei symmetry for general holonomic systems[J]. Acta Physica Sinica, 2009, 58(1): 22-27.(in Chinese))
|
[34] |
Cai J L. Conformal invariance and conserved quantity for the nonholonomic system of Chetaev’s type[J]. International Journal of Theoretical Physics, 2010, 49(1): 201-211.
|
[35] |
He G, Mei F X. Conformal invariance and integration of first-order differential equations[J]. Chinese Physics B, 2008, 17(8): 2764-2766.
|
[36] |
Luo Y P. Generalized conformal symmetries and its application of Hamilton systems[J]. International Journal of Theoretical Physics, 2009, 48: 2665-2671.
|
[37] |
Luo Y P, Fu J L. Conformal invariance and Hojman conserved quantities for holonomic systems with quasi-coordinates[J]. Chinese Physics B, 2010, 19(9): 94-99.
|
[38] |
Zhang Y. Conformal invariance and Noether symmetry, Lie symmetry of holonomic mechanical systems in event space[J]. Chinese Physics B, 2009, 18(11): 4636-4642.
|
[39] |
Zhang M J, Fang J H, Lu K. Conformal invariance and conserved quantity of third-order Lagrange equations for non-conserved mechanical systems[J]. Chinese Physics B, 2009, 18 (
|