YANG Sen-sen, MA Yong-qi, FENG Wei. A Hybrid Generalized Element Method Based on H-R Variational Principle[J]. Applied Mathematics and Mechanics, 2013, 34(3): 272-281. doi: 10.3879/j.issn.1000-0887.2013.03.007
Citation: YANG Sen-sen, MA Yong-qi, FENG Wei. A Hybrid Generalized Element Method Based on H-R Variational Principle[J]. Applied Mathematics and Mechanics, 2013, 34(3): 272-281. doi: 10.3879/j.issn.1000-0887.2013.03.007

A Hybrid Generalized Element Method Based on H-R Variational Principle

doi: 10.3879/j.issn.1000-0887.2013.03.007
  • Received Date: 2013-01-16
  • Rev Recd Date: 2013-01-29
  • Publish Date: 2013-03-15
  • Combining HellingerReissner variational principle and the way of constructing displacement interpolation function of generalized finite element method to construct stress field and displacement field independently, through the suitable stress field could get a more precise stress value of node conveniently, and in the same time to increase the order of displacement function without increasing the number of element’s nodes, in this way a more accurate result was got. This method combines the above two methods of flexibility of constructing the stress field and displacement field, meanwhile, using less memory and equations on the same condition compared with some other methods, and the results also show that of efficiency and higher presicion.
  • loading
  • [1]
    卞学鐄.有限元法论文选[M].北京:国防工业版社, 1980.(Pian T H H. Collected Papers of Finite Element Method [M].Beijing: National Defence Industry Press, 1980.(in Chinese))
    [2]
    Babuska I, Osborn J E.Generalized finite element methods: their performance and their relation to mixed methods[J]. SIAM Journal of Numerical Analysis , 1983, 20(3): 510-535.
    [3]
    Babuska I, Melenk J M.The partition of unity method[J]. International Journal for Numerical Method in Engineering , 1997, 40(4):727-758.
    [4]
    Melenk J M, Babuska I.The partition of the unity finite element method: basic theory and applications[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1/4): 289-314.
    [5]
    Duarte C A, Babuska I, Oden J T.Generalized finite element methods for threedimensional structural mechanics problems[J]. Computer & Structures , 2000, 77(2):215-232.
    [6]
    Strouboulis T, Babuska I, Copps K.The design and analysis of the generalized finite element method[J]. Computer Methods in Applied Mechanics and Engineering , 2000, 181(1/3):43-69.
    [7]
    梁国平,何江衡.广义有限元方法——一类新的逼近空间[J].力学进展,1995, 25(4): 562565.(LIANG Guo-ping, HE Jiang-heng.Generalized finite element method—a new finite element space[J]. Advances in Mechanics , 1995, 25(4):562565.(in Chinese))
    [8]
    栾茂田, 田荣, 杨庆.广义节点有限元法[J].计算力学学报, 2000, 17(2):192-200.(LUAN Mao-tian, TIAN Rong, YANG Qing.Generalizednode finite element method based on manifold concept[J]. Chinese Journal of Computational Mechanics , 2000, 17(2):192-200.(in Chinese))
    [9]
    田荣, 栾茂田, 杨庆.高阶形式广义节点有限元法及其应用[J].大连理工大学学报, 2000, 40(4):492-495.(TIAN Rong, LUAN Mao-tian, YANG Qing.Highorder generalizednode finite element method[J]. Journal of Dalian University of Technology , 2000, 40(4):492-495.(in Chinese))
    [10]
    邵国建, 刘体锋.广义有限元及其应用[J].河海大学学报(自然科学版), 2002, 30(4): 28-31.(SHAO Guo-jian, LIU Ti-feng.Generalized finite element and its application[J]. Journal of Hohai University(Natural Sciences) , 2002, 30(4):28-31.(in Chinese))
    [11]
    石根华.数值流形方法与非连续变形分析[M].裴觉民 译.北京:清华大学出版社,1997.(SHI Gen-hua. Numerical Manifold Method and Discontinuous Deformation Analysis [M].PEI Juemin Transl.Beijing: Tsinghua University Press, 1997.(in Chinese))
    [12]
    李录贤, 刘书静, 张慧华, 陈方方, 王铁军.广义有限元方法研究进展[J].应用力学学报,2009, 26(1):96-108.(LI Lu-xian, LIU Shu-jing, ZHANG Hui-hua, CHEN Fang-fang, WANG Tie-jun.Researching progress of generalized finite element method[J]. Chinese Journal of Applied Mechanics , 2009, 26(1):96108.(in Chinese))
    [13]
    Duarte C A, Hamzeh O N, Liszka T J, Tworzydlo W W.A generalized finite element method for the simulation of threedimensional dynamic crack propagation[J].Computer Methods in Applied Mechanics and Engineering , 2001, 190(15/17):2227-2262.
    [14]
    彭自强, 李小凯, 葛修润.广义有限元法对动态裂纹扩展的数值模拟[J].岩土力学与工程学报, 2004, 23(18):31323137.(PENG Zi-qiang, LI Xiao-kai, GE Xiu-run.Numerical simulation of dynamic crack propagation with generalized finite element method[J]. Chinese Journal of Rock Mechanics and Engineering , 2004, 23(18):3132-3137.(in Chinese))
    [15]
    章青, 刘宽, 夏晓舟, 杨静.广义扩展有限元法及其在裂纹扩展分析中的应用[J].计算力学学报, 2012, 29(3):427-432.(ZHANG Qing, LIU Kuan, XIA Xiao-zhou, YANG Jing.Generalized extended finite element method and its application in crack growth analysis[J]. Chinese Journal of Computational Mechanics , 2012, 29(3):427432.(in Chinese))
    [16]
    田宗漱, 卞学鐄.多变量变分原理与多变量有限元方法[M].北京:科学出版社, 2011.(TIAN Zhong-shu, Pian T H H. Multivariable Variation Principle and Multivariable Finite Element Method [M].Beijing: Science Press, 2011.(in Chinese))
    [17]
    卓家寿.弹塑性力学中的广义变分原理[M].北京:中国水利水电出版社, 2002.(ZHUO Jia-shou. Generalized Variatiational Principle of ElasticPlastic Mechanics [M].Beijing: China Water Power Press, 2002.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1809) PDF downloads(1129) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return