LU Ying-hua, LIU Ren-huai, WANG Fan. Nonlinear Stability of a Double-Deck Reticulated Truncated Circular Shallow Spherical Shell[J]. Applied Mathematics and Mechanics, 2013, 34(6): 564-575. doi: 10.3879/j.issn.1000-0887.2013.06.003
 Citation: LU Ying-hua, LIU Ren-huai, WANG Fan. Nonlinear Stability of a Double-Deck Reticulated Truncated Circular Shallow Spherical Shell[J]. Applied Mathematics and Mechanics, 2013, 34(6): 564-575.

# Nonlinear Stability of a Double-Deck Reticulated Truncated Circular Shallow Spherical Shell

##### doi: 10.3879/j.issn.1000-0887.2013.06.003
• Rev Recd Date: 2013-05-14
• Publish Date: 2013-06-15
• By means of the modified iteration method,the nonlinear stability problem of a double-deck reticulated truncated circular shallow spherical shell under uniform pressure was investigated. According to the fundamental equations of double-deck reticulated circular shallow spherical shells,the critical buckling load for the shell with two types of boundary conditions was obtained and the effect of geometric parameters of the shell on the critical buckling load was discussed.
•  [1] 徐加初, 李勇, 王璠, 刘人怀.双层网格圆底扁球壳的非线性稳定问题[J].应用数学和力学，2010,31(3)：279-290.（XU Jia-chu,LI Yong,WANG Fan,LIU Ren-huai. Nonlinear stability of double-deck reticulated circular shallow spherical shell[J].Applied Mathematics and Mechanics,2010,31(3)：279-290. (in Chinese)） [2] 卢保红,刘人怀. 双层网格矩形底扁球壳的非线性稳定性分析[J]. 暨南大学学报, 2005,26(1): 60-63.（LU Bao-hong,LIU Ren-huai. Nonlinear buckling of sphere double-deck reticulated shallow shells[J]. Journal of Jinan University (Natural Science),2005,26(1): 60-63. (in Chinese)） [3] 杜冰, 王璠, 刘人怀, 卢迎华.大跨度双层网壳的非线性动态响应[J]，力学与实践，2006,28(4)：46-50.(DU Bing,WANG Fan,LIU Ren-huai,LU Ying-hua. Nonlinear dynamic response of largespan double deck reticulated shells[J].Mechanics in Engineering,2006,28(4): 46-50. (in Chinese)) [4] 徐加初, 肖潭, 刘人怀. 双层柱面网格扁壳的非线性稳定性分析[J].工程力学, 2004,21(2):20-23.(XU,Jia-chu,XIAO,Tan,LIU,Ren-huai. Nonlinear buckling of cylindrical double-deck reticulated shallow shells[J].Engineering Mechanics,2004,21(2), 20-23. (in Chinese)) [5] 刘人怀, 肖潭. 双层正交正放网格扁壳的非线性弯曲理论[C]//庄蓬甘 主编.《现代力学与科技进步》. 北京：清华大学出版社, 1997：1212-1215.（LIU Ren-huai,XIAO Tan. Nonlinear bending theory of double-deck orthogonal and ortho-laid reticulated shallow shells[C]//ZHUANG Feng-gan ed.Modern Mechanics and Science Progress.Beijing: Tsinghua University Press, 1997: 1212-1215. (in Chinese)） [6] 刘人怀, 肖潭. 矩形底双层网格扁壳的非线性弯曲[J]. 暨南大学学报(自然科学版), 1998,19(3):1-5.(LIU Ren-huai,XIAO Tan. Nonlinear bending of rectangular double-deck reticulated shallow shells[J].Journal of Jinan University(Natural Science & Medicien Edition),1998,19(3):1-5. (in Chinese)) [7] 肖潭, 刘人怀. 斜放四角锥扁网壳的非线性弯曲理论[J]. 应用数学和力学，2001,22（7）:665-672.（XIAO Tan,LIU Ren-huai. Nonlinear bending theory of diagonal square pyramid reticulated shallow shell[J].Applied Mathematics and Mechanics, 2001,22(7): 665-672. (in Chinese)） [8] 刘人怀, 肖潭.矩形底双层网格扁壳的非线性屈曲[J]. 暨南大学学报(自然科学版),1999,20(1): 1-6.（LIU Ren-huai,XIAO Tan. Nonlinear buckling of rectangular double-deck reticulated shallow shells[J].Journal of Ji’nan University(Natural Science & Medicien Edition),1999,20(1): 1-6. (in Chinese)） [9] LIU Ren-huai. Nonlinear bending of circular sandwich plates under the action of axisymmetric uniformly distributed line loads[C]//YEH Kai-yuan ed.Progress in Applied Mechanics: Mechanics of Surface Structures (The CHIEN Wei-zang Anniversary Volume)Vol 6. Dordrecht: Martinus Nijhoff Publishers,1987:293-299. [10] 聂国华, 刘人怀. 矩形网格扁壳结构的非线性弹性理论[J]. 应用数学和力学,15(5): 389-398.(NIE Guo-hua, LIU Ren-huai. Non-linear elastic theory of rectangular reticulated shallow shellstructures[J].Applied Mathematics and Mechanics,1994,15(5): 389-398.(in Chinese)) [11] LIU Ren-huai, CHENG Zhen-qiang. On the nonlinear buckling of circular shallow spherical sandwich shells under the action of uniform edge moments[J]. Int J NonLinear Mech,1995,30(1): 33-43. [12] 刘人怀. 夹层圆板的非线性弯曲[J]. 应用数学和力学,1981,2(2): 173-190.(LIU Ren-huai. Nonlinear bending of circular sandwich plates[J]. Applied Mathematics and Mechanics,1981,2(2): 173-190.(in Chinese)) [13] LIU Ren-huai,LI Jun. Nonlinear vibration of shallow conical sandwich shells[J].Int J Non-Linear Mech, 1995, 30(2): 97-109. [14] LIU Ren-huai,LI Dong,NIE Guo-hua,CHENG Zhen-qiang. Non-linear buckling of aquarelylatticed shallow spherical shell[J].Int J Non-Linear Mechanics, 1991,26(5): 547-553. [15] 刘人怀. 在内边缘均布力矩作用下中心开孔圆底扁球壳的非线性稳定问题[J]. 科学通报,1965,10(3): 253-255.(LIU Ren-huai. Nonlinear stability of circular shallow spherical shell with a hole in the center under the action of uniform moment at the inner edge[J] .Chinese Science Bulletin,1965,10(3): 253-255. (in Chinese)) [16] 叶开沅,刘人怀,平庆元，李思来. 圆底扁球壳在均匀线布载荷作用下的非线性稳定性[J].科学通报,1965(2): 142-144.(YEH Kai-yuan,LIU Ren-huai,PING Qing-yuan,LI Si-lai. Nonlinear stability of thin circular shallow spherical shell under actions of axisymmetric uniformly distributed line loads[J].Science Bulletin,1965(2): 142-145. (in Chinese)) [17] 叶开沅,王新志. 变厚度圆薄板大挠度理论的修正迭代法[J].甘肃工业大学报,1986,12(3):31-39（YE Kai-yuan, WANG Xin-zhi. Modified iteration method in the large deflection problem of thin circular plates with non-uniform thickness[J].Journal of Gansu University of Technology, 1986,12(3): 31-39. (in Chinese)） [18] 刘人怀. 网壳结构的非线性弯曲、稳定和振动[M]. 北京: 北京科学出版社，2011.(LIU Ren-huai.The Nonlinear Bending,Stability and Vibration Problems of Reticulated Shell [M]. Beijing: Beijing Science and Technology Press, 2011. (in Chinese)) [19] 董石麟,詹联盟. 网状扁壳与带肋扁壳组合结构的拟三层壳分析法[J]. 建筑结构学报,1992,13(5): 25-32.(DONG Shi-lin,ZHAN Lian-ming. Three-layer shell analogy method for analyzing composite structures composed of lattice flat shells and rib flat shells[J].Journal of Building Structures, 1992,13(5): 25-33. (in Chinese)) [20] 逢志宇,陈昕,沈世钊. 哈尔滨速滑场网壳结构静力、动力以及稳定性分析[C]//第五届空间结构学术交流会论文集,1990,229-233.(FENG Zhi-yu,CHEN Xin,SHEN Shi-zhao.The analysis of static dynamic and stability about the reticulated shell structure on haerbin speed-slip sport[C]// Proceedings of the Fifth Spatial Structure Conference, 1990: 229-233. (in Chinese)) [21] 董石麟, 詹伟东.单双层球面扁网壳连续化方法非线性稳定理论临界荷载的确定[J]. 工程力学, 2004,21(6):6-14.(DONG Shi-lin , ZHAN Wei-dong. Non-linear stability critical loads of single-layer and reticulated spherical shallow shells based on continuum analogy method[J] .Engineering Mechanics,2004,21(6):6-14.(in Chinese))

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142