JIANG Shou-yan, DU Cheng-bin. Evaluation on Stress Intensity Factors at the Crack Tip Under Dynamic Loads Using Extended Finite Element Methods[J]. Applied Mathematics and Mechanics, 2013, 34(6): 586-597. doi: 10.3879/j.issn.1000-0887.2013.06.005
 Citation: JIANG Shou-yan, DU Cheng-bin. Evaluation on Stress Intensity Factors at the Crack Tip Under Dynamic Loads Using Extended Finite Element Methods[J]. Applied Mathematics and Mechanics, 2013, 34(6): 586-597.

# Evaluation on Stress Intensity Factors at the Crack Tip Under Dynamic Loads Using Extended Finite Element Methods

##### doi: 10.3879/j.issn.1000-0887.2013.06.005
• Rev Recd Date: 2013-05-16
• Publish Date: 2013-06-15
• In the framework of the extended finite element methods (XFEM), the extraction of dynamic stress intensity factors (DSIFs) for stationary cracks being subjected to dynamic loads was detaily studied. Having constructed the approximation of dynamic XFEM, the derivation of governing equation for dynamic XFEM was presented. The Newmark implicit algorithm was used for time integration. Meanwhile, a mass lumping strategy for XFEM implicit dynamics was proposed. In addition, the interaction integral method was given for evaluating DSIFs. Compared with the interaction integral method for evaluating stress intensity factors (SIFs) of cracks under static conditions, the contribution of inertial effects was added to the interaction integral method for evaluating DSIFs. The numerical illustrations show that the XFEM can evaluate accurately DSIFs and the proposed mass lumping strategy is also quite effective. To obtain DSIFs correctly, the inertial effects on interaction integral cannot be ignored.
•  [1] 章青, 刘宽, 夏晓舟, 杨静. 广义扩展有限元法及其在裂纹扩展分析中的应用[J]. 计算力学学报, 2012,29(3): 427-432. (ZHANG Qing, LIU Kuan, XIA Xiao-Zhou, YANG Jing. Generalized extended finite element method and its application in crack growth analysis[J].Chinese Journal of Computational Mechanics,2012,29(3): 427-432. (in Chinese)) [2] 余天堂, 万林林. 非均质材料热传导问题的扩展有限元法[J]. 计算力学学报, 2011,28(6): 884-890. (YU Tian-tang, WAN Lin-lin. Extended finite element method for heat transfer problems in heterogeneous material[J].Chinese Journal of Computational Mechanics,2011,28(6): 884-890. (in Chinese)) [3] Belytschko T, Chen H, Xu J,Zi G. Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment[J].International Journal for Numerical Methods in Engineering,2003,58(12): 1873-1905. [4] Chen H.Enriched finite element methods and their applications[D]. Evanston, Illinois: Northwestern University, 2003. [5] Réthoré J, Gravouil A, Combescure A. An energy-conserving scheme for dynamic crack growth using the extended finite element method[J]. International Journal for Numerical Methods in Engineering,2005,63(5): 631-659. [6] Réthoré J, Gravouil A, Combescure A. A combined space-time extended finite element method[J]. International Journal for Numerical Methods in Engineering,2005,64(2): 260-284. [7] Menouillard T, Belytschko T. Dynamic fracture with meshfree enriched XFEM[J].Acta Mechanica,2010,213(1/2): 53-69. [8] Menouillard T, Belytschko T. Smoothed nodal forces for improved dynamic crack propagation modeling in XFEM[J].International Journal for Numerical Methods in Engineering,2010,84(1): 47-72. [9] Menouillard T, Song J H, Duan Q L,Belytschko T. Time dependent crack tip enrichment for dynamic crack propagation[J].International Journal of Fracture,2010,162(1/2): 33-49. [10] Menouillard T, Réthoré J, Combescure A,Bung H. Efficient explicit time stepping for the extended finite element method (X-FEM)[J]. International Journal for Numerical Methods in Engineering,2006,68(9): 911-939. [11] Menouillard T, Réthoré J, Mos N,Combescure A, Bung H. Mass lumping strategies for X-FEM explicit dynamics: application to crack propagation[J].International Journal for Numerical Methods in Engineering,2008,74(3): 447-474. [12] Liu Z L, Menouillard T, Belytschko T. An XFEM/Spectral element method for dynamic crack propagation[J]. International Journal of Fracture,2011,169(2): 183-198. [13] Motamedi D, Mohammadi S. Dynamic analysis of fixed cracks in composites by the extended finite element method[J]. Engineering Fracture Mechanics,2010,77(17): 3373-3393. [14] 方修君, 金峰, 王进廷. 基于扩展有限元法的Koyna重力坝地震开裂过程模拟[J]. 清华大学学报(自然科学版), 2008,48(12): 2065-2069. (FANG Xiu-jun, JIN Feng, WANG Jin-ting. Seismic fracture simulation of the Koyna gravity dam using an extended finite element method[J].Journal of Tsinghua University (Science and Technology),2008,48(12): 2065-2069. (in Chinese)) [15] 王志勇, 马力, 吴林志, 于红军. 基于扩展有限元法的颗粒增强复合材料静态及动态断裂行为研究[J]. 固体力学学报, 2011,32(6): 566-573. (WANG Zhi-yong, MA Li, WU Lin-zhi, YU Hong-jun. Investigation of static and dynamic fracture behavior of particlereinforced composite materials by the extended finite element method[J].Chinese Journal of Solid Mechanics,2011,32(6): 566-573. (in Chinese)) [16] 庄茁, 柳占立, 成斌斌, 廖剑晖. 扩展有限单元法[M]. 北京: 清华大学出版社, 2012. (ZHUANG Zhuo, LIU Zhan-li, CHENG Bin-bin, LIAN Jian-hui.Extended Finite Element Method [M]. Beijing: Tsinghua University Press, 2012. (in Chinese)) [17] Zhuang Z, Cheng B B. Development of X-FEM methodology and study on mixed-mode crack propagation[J]. Acta Mechanica Sinica,2011,27(3): 406-415. [18] 范天佑. 断裂动力学原理与应用[M]. 北京: 北京理工大学出版社, 2006: 10-12. (FANG Tian-you.Fracture Dynamics: Principle and Application [M]. Beijing: Beijing Institute of Technology Press, 2006: 10-12. (in Chinese)) [19] Mohammadi S.Extended Finite Element Method[M]. Blackwell Publishing Ltd, 2008. [20] Song S H, Paulino G H. Dynamic stress intensity factors for homogeneous and smoothly heterogeneous materials using the interaction integral method[J].International Journal of Solids and Structures,2006,43(16): 4830-4866. [21] Freund L B. Dynamic Fracture Mechanics[M]. Cambridge Monographs on Mechanics and Applied Mathematics, 1990. [22] Chen Y M. Numerical computation of dynamic stress intensity factors by a Lagrangian finite-difference method (the HEMP code)[J].Engineering Fracture Mechanics,1975,7(4): 653-660.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142