WANG Xin-dong, DENG Zi-chen, WANG Yan, FENG Guo-chun. Dynamic Behavior Analysis of Rotational Flexible Blades Based on Time-Domain Finite Element Method[J]. Applied Mathematics and Mechanics, 2014, 35(4): 353-363. doi: 10.3879/j.issn.1000-0887.2014.04.002
 Citation: WANG Xin-dong, DENG Zi-chen, WANG Yan, FENG Guo-chun. Dynamic Behavior Analysis of Rotational Flexible Blades Based on Time-Domain Finite Element Method[J]. Applied Mathematics and Mechanics, 2014, 35(4): 353-363.

# Dynamic Behavior Analysis of Rotational Flexible Blades Based on Time-Domain Finite Element Method

##### doi: 10.3879/j.issn.1000-0887.2014.04.002
Funds:  The National Natural Science Foundation of China(11172239; 11372252)
• Rev Recd Date: 2014-02-20
• Publish Date: 2014-04-15
• The time-domain finite element method was introduced to investigate the dynamic responses of rotational flexible blades. Firstly, the rotational flexible blades were modeled as a classic rigid hub-flexible beam system. Based on the first-order approximate coupling (FOAC) model, the Lagrangian function for the rotational flexible blades system was derived. Then, with the assumed mode method (AMM), the time-domain finite element scheme was constructed. Finally, the dynamic behavior of the rotational flexible blades was analyzed with the time-domain finite element method through numerical simulation. Constructed directly without derivation of the kinetic equations, the proposed discrete scheme is naturally endowed with symplectic conservation, high computational accuracy and good stability. Numerical results show that the time-domain finite element method can effectively solve the rigid-flexible coupling problem, in which the low-frequency large motion and the high-frequency elastic vibration of the blades are interactive.
•  [1] 陆佑方. 柔性多体系统动力学[M]. 北京: 高等教育出版社, 1996.(LU You-fang.Dynamics of Flexible Multibody Systems [M]. Beijing: Higher Education Press, 1996.(in Chinese)) [2] 洪嘉振, 刘铸永. 刚柔耦合动力学的建模方法[J]. 上海交通大学学报, 2008,42(11): 1922-1926.(HONG Jia-zhen, LIU Zhu-yong. Modeling methods of rigid-flexible coupling dynamics[J].Journal of Shanghai Jiao Tong University,2008,42(11): 1922-1926.(in Chinese)) [3] Winfrey R C. Dynamic analysis of elastic link mechanisms by reduction of coordinates[J].ASME Journal of Engineering for Industry,1972,94(2): 577-582. [4] Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached to a moving base[J].Journal of Guidance, Control and Dynamics,1987,10(2): 139-151. [5] 杨辉, 洪嘉振, 余征跃. 刚-柔耦合多体系统动力学建模与数值仿真[J]. 计算力学学报, 2003,20(4): 402-408.(YANG Hui, HONG Jia-zhen, YU Zheng-yue. Dynamics modeling and numerical simulation for a rigid-flexible coupling multibody system[J].Chinese Journal of Computational Mechanics,2003,20(4): 402-408.(in Chinese)) [6] 蔡国平, 洪嘉振. 旋转运动柔性梁的假设模态方法研究[J]. 力学学报, 2005,37(1): 48-56.(CAI Guo-ping, HONG Jia-zhen. Assumed mode method of a rotating flexible beam[J].Acta Mechanica Sinica,2005,37(1): 48-56.(in Chinese)) [7] Shabana A A. Flexible multibody dynamics: review of past and recent developments[J].Multibody System Dynamics,1997,1(2): 189-222. [8] 胡海岩, 田强, 张伟, 金栋平, 胡更开, 宋燕平. 大型网架式可展开空间结构的非线性动力学与控制[J]. 力学进展. 2013,43(4): 390-414.(HU Hai-yan, TIAN Qiang, ZHANG Wei, JIN Dong-ping, HU Geng-kai, SONG Yan-ping. Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes[J].Advances in Mechanics,2013,43(4): 390-414.(in Chinese)) [9] FENG Kang. On difference schemes and symplectic geometry[C]//Proceeding of the 〖STBX〗1984 Beijing Symposium on Differential Geometry and Differential Equations . Beijing: Science Press, 1985: 42-58. [10] 王琪, 黄克累, 陆启韶. 树形多体Hamilton系统辛算法[J]. 计算物理, 1997,14(1): 35-39.(WANG Qi, HUANG Ke-lei, LU Qi-shao. Symplectic algorithm for Hamilton multibody system[J].Chinese Journal of Computational Physics,1997,14(1): 35-39.(in Chinese)) [11] 钟万勰. 应用力学的辛数学方法[M]. 北京: 高等教育出版社, 2006.(ZHONG Wan-xie.Symplectic Solution Methodology in Applied Mechanics[M]. Beijing: Higher Education Press, 2006.(in Chinese)) [12] HUANG Yong-an, DENG Zi-chen, YAO Lin-xiao. An improved symplectic precise integration method for analysis of the rotating rigid-flexible coupled system[J].Journal of Sound and Vibration, 2007,299(1/2): 229-246. [13] 钟万勰, 姚征. 时间有限元与保辛[J]. 机械强度, 2005,27(2): 178-183.(ZHONG Wan-xie, YAO Zheng. Time domain FEM and symplectic conservation[J].Journal of Mechanical Strength,2005,27(2): 178-183.(in Chinese)) [14] 钟万勰, 高强. 时间-空间混和有限元[J]. 动力学与控制学报, 2007,5(1): 1-7.(ZHONG Wan-xie, GAO Qiang. Harmony element method for time and space domain[J].Journal of Dynamics and Control, 2007,5(1): 1-7.(in Chinese)) [15] 隋永枫, 高强, 钟万勰. 陀螺系统时间有限元方法[J]. 振动与冲击, 2012,31(13): 95-98.(SUI Yong-feng, GAO Qiang, ZHONG Wan-xie. Time domain finite element method for gyroscopic systems[J].Journal of Vibration and Shock, 2012,31(13): 95-98.(in Chinese)) [16] 杨辉. 刚柔耦合动力学系统的建模理论与实验研究[D]. 博士学位论文. 上海: 上海交通大学, 2002.(YANG Hui. Study on dynamic modeling theory and experiments for rigid-flexible coupling systems[D]. PhD Thesis. Shanghai: Shanghai Jiao Tong University, 2002.(in Chinese)) [17] 刘向龙. 旋转柔性叶片系统动力学特性研究[D]. 硕士学位论文. 哈尔滨: 哈尔滨工业大学, 2007.(LIU Xiang-long. Dynamic characteristics research of rotating flexible blade[D]. Master Thesis. Harbin: Harbin Institute of Technology, 2007.(in Chinese)) [18] Hairer E, Wanner G.Solving Ordinary Differential Equations Ⅱ: Stiff and Differential Algebraic Problems [M]. Springer, 1987.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142