WEI Zheng, ZHAO Shuang, CHEN Shao-yong, DING Wen-xuan. Study of Growth Mechanisms for the Liquid Bridge in Atomic Force Microscopes[J]. Applied Mathematics and Mechanics, 2015, 36(1): 87-98. doi: 10.3879/j.issn.1000-0887.2015.01.008
Citation: WEI Zheng, ZHAO Shuang, CHEN Shao-yong, DING Wen-xuan. Study of Growth Mechanisms for the Liquid Bridge in Atomic Force Microscopes[J]. Applied Mathematics and Mechanics, 2015, 36(1): 87-98. doi: 10.3879/j.issn.1000-0887.2015.01.008

Study of Growth Mechanisms for the Liquid Bridge in Atomic Force Microscopes

doi: 10.3879/j.issn.1000-0887.2015.01.008
Funds:  The National Natural Science Foundation of China(11072024)
  • Received Date: 2014-10-13
  • Publish Date: 2015-01-15
  • The liquid bridge is the main reason for image distortion of an atomic force microscope (AFM) in the atmospheric ambiance, meanwhile the capillary force resulting from the liquid bridge dominates the adhesion force in this condition. Investigation of the liquid bridge is of great importance to understand the imaging mechanisms and the sample properties. Herein, 3 different growth processes were presented and analyzed for the growth mechanisms of the liquid bridge in AFMs, including the squeezing process, the capillary condensation and the motion of thin liquid film. The characteristic equilibrium times of the 3 processes are of great importance to the understanding of the liquid bridge’s growth dynamics. The equilibrium time of the squeezing process depends on the contact mode, that of the capillary condensation is at the μs order of magnitude and that of the liquid film motion varies drastically with different viscosities of the liquid film. The contribution of the corresponding 3 growth mechanisms to liquid bridge volume, capillary force and energy dissipation was comaratively studied in different AFM operation modes.
  • loading
  • [1]
    Giessibl F J. Advances in atomic force microscopy[J].Reviews of Modern Physics,2003,75(3): 949-983.
    [2]
    Gan Y. Atomic and subnanometer resolution in ambient conditions by atomic force microscopy[J].Surface Science Reports,2009,64(3): 99-121.
    [3]
    García R, Pérez R. Dynamic atomic force microscopy methods[J].Surface Science Reports,2002,47(6/8): 197-301.
    [4]
    Cappella B, Dietler G. Force-distance curves by atomic force microscopy[J].Surface Science Reports,1999,34(1/3): 1-3, 5-105.
    [5]
    Wei Z, Zhao Y P. Growth of liquid bridge in AFM[J].Applied Physics,2007,40(14): 4368-4375.
    [6]
    赵亚溥. 纳米与介观力学[M]. 北京: 科学出版社, 2014.(ZHAO Ya-pu.Nano and Mesoscopic Mechanics [M]. Beijing: Science Press, 2014.(in Chinese))
    [7]
    Weisenhorn A L, Hansma P K, Albrecht T R, Quate C F. Forces in atomic force microscopy in air and water[J].Applied Physics Letters,1989,54(26): 2651-2653.
    [8]
    Butt H J, Cappella B, Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications[J].Surface Science Reports,2005,59(1/6): 1-152.
    [9]
    Neves B R A, Leonard D N, Salmon M E, Russell P E, Troughton Jr E B. Observation of topography inversion in atomic force microscopy of self-assembled monolayers[J].Nanotechnology,1999,10(4): 399-404.
    [10]
    Palacios-Lidn E, Munuera C, Ocal C, Colchero J. Contrast inversion in non-contact dynamic scanning force microscopy: what is high and what is low?[J].Ultramicroscopy,2010,110(7): 789-800.
    [11]
    Kohonen M M, Maeda N, Christenson H K . Kinetics of capillary condensation in a nanoscale pore[J].Physical Review Letters,1999,82(23): 4667-4670.
    [12]
    Wei Z, Zhao Y P. Experimental investigation of the velocity effect on adhesion forces with an atomic force microscope[J].Chinese Physics Letters,2004,21(4): 616-619.
    [13]
    Sirghi L. Transport mechanisms in capillary condensation of water at a single-asperity nanoscopic contact[J]. Langmuir,2012,28(5): 2558-2566.
    [14]
    Rabinovich Y I, Singh A, Hahn M, Brown S, Moudgil B. Kinetics of liquid annulus formation and capillary forces[J].Langmuir,2011,27(22):13514-13523.
    [15]
    Zitzler L, Herminghaus S, Mugele F. Capillary forces in tapping mode atomic force microscopy[J].Physical Review B,2002,66(15): 155436.
    [16]
    WEI Zheng, ZHAO Ya-pu. Adhesion elastic contact and hysteresis effect[J].Chinese Physics,2004,13(8): 1320-1325.
    [17]
    Asay D B, Kim S H. Evolution of the adsorbed water layer structure on silicon oxide at room temperature[J].The Journal of Physical Chemistry B,2005,109(35):16760-16763.
    [18]
    Hu J, Xiao X D, Ogletree D F, Salmeron M. The structure of molecularly thin films of water on mica in humid environments[J].Surface Science,1995,344(3): 221-236.
    [19]
    de Boer J H.Dynamical Character of Adsorption [M]. Oxford: Clarendon, 1953.
    [20]
    Israelachvili J N.Intermolecular and Surface Forces [M]. 2nd ed. San Diego, CA: Academic, 1992.
    [21]
    Dushman S.Scientific Foundations of Vacuum Technique [M]. New York: Wiley, 1949.
    [22]
    WEI Zheng, HE Meng-fu, ZHAO Wen-bin, LI Yang. Thermodynamic analysis of liquid bridge for fixed volume in atomic force microscope[J].Science China: Physics Mechanics & Astronomy,2013,56(10): 1962-1969.
    [23]
    魏征, 陈少勇, 赵爽, 孙岩. 原子力显微镜中等容液桥的毛细力分析[J]. 应用数学和力学, 2014,35(4): 364-376.(WEI Zheng, CHEN Shao-yong, ZHAO Shuang, SUN Yan. Capillary force analysis of constant-volume liquid bridges in atomic force microscopes[J].Applied Mathematics and Mechanics,2014,35(4): 364-376.(in Chinese))
    [24]
    赵亚溥. 表面与界面物理力学[M]. 北京: 科学出版社, 2012.(ZHAO Ya-pu.Surface and Interface Physics Mechanics [M]. Beijing: Science Press, 2012.(in Chinese))
    [25]
    Asay D B, Kim S H. Effects of adsorbed water layer structure on adhesion force of silicon oxide nanoasperity contact in humid ambient[J].The Journal of Chemical Physics,2005,124(17): 4712-4715.
    [26]
    Verdaguer A, Weis C, Oncins G, Ketteler G, Bluhm H, Salmeron M. Growth and structure of water on SiO2 films on Si investigated by Kelvin probe microscopy and in situ x-ray spectroscopies[J].Langmuir,2007,23(19): 9699-9703.
    [27]
    Bhushan B, Israelachvili J N, Landman U. Nanotribology: friction, wear and lubrication at the atomic scale[J].Nature,1995,374(6523): 607-616.
    [28]
    Persson B N J.Sliding Friction: Physical Principles and Applications[M]. 2nd ed. New York: Springer, 2000.
    [29]
    Brovchenko I, Oleinikova A.Interfacial and Confined Water[M]. Amsterdam, Oxford: Elsevier Science, 2008.
    [30]
    Tichy J A, Meyer D M. Review of solid mechanics in tribology[J].International Journal of Solids and Structures,2000,37(1/2): 391-400.
    [31]
    Peschel G, Adlfinger K H. Viscosity anomalies in liquid surface zones—IV: the apparent viscosity of water in thin layers adjacent to hydroxylated fused silica surfaces[J].Journal of Colloid and Interface Science,1970,34(4): 505-510.
    [32]
    Goertz M P, Moore N W. Mechanics of soft interfaces studied with displacement-controlled scanning force microscopy[J].Progress in Surface Science,2010,85(9/12): 347-397.
    [33]
    Chen X, Cao G X, Han A J, Punyamurtula V K, Liu L, Culligan P J, Kim T, Qiao Y. Nanoscale fluid transport: size and rate effects[J].Nano Letters,2008,8(9): 2988-2992.
    [34]
    Goertz M P, Houston J E, Zhu X Y. Hydrophilicity and the viscosity of interfacial water[J].Langmuir,2007,23(10): 5491-5497.
    [35]
    Feibelman P J. Effect of high-viscosity interphases on drainage between hydrophilic surfaces [J].Langmuir,2004,20(4): 1239-1244.
    [36]
    Raviv U, Laurat P, Klein J. Fluidity of water confined to subnanometre films[J].Nature,2001,413(6851): 51-54.
    [37]
    Lee M, Sung B, Hashemi N, Jhe W. Study of a nanoscale water cluster by atomic force microscopy[J].Faraday Discussions,2008,141: 415-421.
    [38]
    Leng Y, Cummings P T. Fluidity of hydration layers nanoconfined between mica surfaces[J].Physical Review Letters,2005,94(2): 026101.
    [39]
    Lane J M D, Chandross M, Stevens M J, Grest G S. Water in nanoconfinement between hydrophilic self-assembled monolayers[J].Langmuir,2008,24(10): 5209-5212.
    [40]
    Lorenz C D, Lane J M D, Chandross M, Stevens M J, Grest G S. Molecular dynamics simulations of water confined between matched pairs of hydrophobic and hydrophilic self-assembled monolayers[J].Langmuir,2009,25(8): 4535-4542.
    [41]
    LI Tai-de, GAO Jian-ping, Szoszkiewicz R, Landman U, Riedo E. Structured and viscous water in subnanometer gaps[J].Physical Review B,2007,75(11): 115415.
    [42]
    Major R C, Houston J E, McGrath M J, Siepmann J I, Zhu X Y. Viscous water meniscus under nanoconfinement[J].Physical Review Letters,2006,96(17):177803.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1311) PDF downloads(1407) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return