ZOU Li, ZONG Zhi, WANG Zhen, ZHAO Yong, LIANG Hui. Analytical Solutions of Periodic Stationary Internal Waves in Infinitely Deep Water With Exponential Vertical Density Distribution[J]. Applied Mathematics and Mechanics, 2015, 36(1): 99-109. doi: 10.3879/j.issn.1000-0887.2015.01.009
 Citation: ZOU Li, ZONG Zhi, WANG Zhen, ZHAO Yong, LIANG Hui. Analytical Solutions of Periodic Stationary Internal Waves in Infinitely Deep Water With Exponential Vertical Density Distribution[J]. Applied Mathematics and Mechanics, 2015, 36(1): 99-109.

# Analytical Solutions of Periodic Stationary Internal Waves in Infinitely Deep Water With Exponential Vertical Density Distribution

##### doi: 10.3879/j.issn.1000-0887.2015.01.009
Funds:  The National Basic Research Program of China (973 Program)（2013CB036101）；The National Natural Science Foundation of China（51109031; 51379033; 51221961; 51309040; 51279030，51239002）
• Rev Recd Date: 2014-12-17
• Publish Date: 2015-01-15
• A train of periodic deep water stationary waves with finite amplitudes were investigated analytically with the homotopy analysis method. The vertical distribution of water density was considered as variable in a continuous exponential trend. A new form of partial differential equations were proposed as the auxiliary equations and the new-form solution expressions were obtained in order to match the level boundary condition at the bottom and the hypothetical infinitely rigid condition. The detailed recursive relation of the coefficient in the solution expression was given and the explicit expressions of the permanent stationary periodic internal waves were presented. The convergent series solutions were obtained for the global domain both in vertical and horizontal directions. The relation between the density variable and the internal wave amplitude was revealed.
•  [1] Keulegan G H.Characteristics of internal solitary waves[J].Journal of Research of the National Bureau of Standards,1953,51(3): 133-140. [2] Long R R. Solitary waves in the one- and two-fluid systems[J].Tellus,1956,8(4): 460-471. [3] Peters A S, Stoker J J. Solitary waves in liquids having non-constant density[J].Communications on Pure and Applied Mathematics,1960,13(1): 115-164. [4] Ter-Krikorov A M. Théorie exact des ondes longues stationnaires dans un liquide hétéogéne[J].J Mécanique,1963,2: 351-376. [5] Bona J L, Bose D K, Turner R E L. Finite amplitude steady waves in stratified fluids[J].Journal de Mathématiques Pures et Appliquées,1983,62(4): 389-439. [6] Benjamin T B. Internal waves of finite amplitude and permanent form[J].J Fluid Mech,1966,25(2): 241-270. [7] Benjamin T B. Internal waves of permanent form in fluids of great depth[J]. J Fluid Mech,1967,29(3): 559-592. [8] King S E, Carr M, Dritschel D G. The steady-state form of large-amplitude internal solitary waves[J].J Fluid Mech,2011,666: 477-505. [9] Helfrich K R, Melville W K. Longnonlinear internal waves[J].Annual Review of Fluid Mechanics,2006,38: 395-425. [10] Lamb H.Hydrodynamics[M]. Cambridge: Cambridge University Press, 1932. [11] Camassa R, Rusas P O, Saxena A, Tiron R. Fully nonlinear periodic internal waves in a two-fluid system of finite depth[J].Journal of Fluid Mechanics,2010,652: 259-298. [12] Broeck V J M, Turner R E L. Long periodic internal waves[J].Phys Fluids A,1929,4(9): 1929-1935. [13] Turner R E L. Internal waves in fluids with rapidly varying density[J].Annali Della Scuola Normale Superiore di Pisa-Classe di Scienze,1981,8(4): 513-573. [14] Cheng J, Cang J, Liao S J. On the interaction of deep water waves and exponential shear currents[J].Z Angew Math Phys,2009,60(3): 450-478. [15] Long R R. Some aspects of the flow of stratified fluids[J].Tellus,1953,5(1): 42-57. [16] Dubreil-Jacotin M L. Sur les théorèmes d’existence relatifs aux ondes permanents périodiques à deux dimensions dans les liquids hétérogènes[J].Journal de Mathématiques Pures et Appliquées,1937,19: 43-67. [17] Abarbanel H D I, Holm D D, Marsden J E, Ratiu T. Richardson number criterion for the nonlinear stability of three-dimensional stratified flow[J].Physical Review Letters,1984,52(26): 2352-2355. [18] Liao S J.Beyond Perturbation: Introduction to the Homotopy Analysis Method [M]. London: Chapman & Hall/ CRC Press, 2003. [19] Schwartz L W. Computer extension and analytic continuation of Stoke’s expansion for gravity waves[J].J Fluid Mech,1974,62(3): 553-578.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142