WANG Xi-gang, FU Ming-fu. Fuzzy Elasto-Visco-Plasticity Analysis of Finite Deformation Based on the L-D Plastic Flow Rule[J]. Applied Mathematics and Mechanics, 2015, 36(2): 128-139. doi: 10.3879/j.issn.1000-0887.2015.02.002
 Citation: WANG Xi-gang, FU Ming-fu. Fuzzy Elasto-Visco-Plasticity Analysis of Finite Deformation Based on the L-D Plastic Flow Rule[J]. Applied Mathematics and Mechanics, 2015, 36(2): 128-139.

# Fuzzy Elasto-Visco-Plasticity Analysis of Finite Deformation Based on the L-D Plastic Flow Rule

##### doi: 10.3879/j.issn.1000-0887.2015.02.002
Funds:  The National Natural Science Foundation of China（11362016）
• Rev Recd Date: 2014-11-22
• Publish Date: 2015-02-15
• To dynamically analyze the finite deformation of rock and soil materials, the Green strain and the 2nd Kirchoff stress were used to describe their geometric nonlinearity. Through introduction of a membership function into the yield function, a fuzzy elasto-visco-plastic constitutive model based on the L-D plastic flow rule was built. According to the principle of nonlinear finite element, the numerical finite-deformation results corresponding to the dynamic triaxial soil tests were obtained, and compared with those traditional small-deformation results. The comparison shows that the finite-deformation results were closer to the dynamic triaxial tested results. Moreover, the fuzzy elasto-visco-plastic model well reflects the soil and rock dynamic properties under cyclic loading, and thus makes an effective way for soil and rock dynamic analysis, given its relatively simpler mathematical formulation and more convenience for finite element programming.
•  [1] Hill R. Some basic principles in the mechanics of solids without a natural time[J]. Journal of the Mechanics and Physics of Solids,1959,7(3): 209-225. [2] Hill R. Aspects invariance in solid mechanics[J]. Advances in Applied Mechanics,1978,18: 1-75. [3] 郭仲衡. 非线性弹性理论[M]. 北京: 科学出版社, 1980.(GUO Zhong-heng. Nonlinear Elastic Theory [M]. Beijing: Science Press, 1980.(in Chinese)) [4] Guo Z H, Dubey R H. Basic aspects of Hill’s method in solid mechanics[J]. Solid Mechanics Archives,1984,9: 353-380. [5] Guo Z H, Man C S. Conjugate stress and tensor equation ∑mr=1 Um-rXUr-1=C[J]. International Journal of Solid and Structure,1992,29(16): 2063-2076. [6] 谢永利. 大变形固结理论及其有限元法[M]. 北京: 人民交通出版社, 1998.(XIE Yong-li. The Large Deformation Consolidation Theory and Finite Element Method [M]. Beijing: China Communications Press, 1998.(in Chinese)) [7] 刘学军, 李明瑞, 黄文彬. 基于对数应变的有限变形弹塑性理论[J]. 中国农业大学学报, 2000,5(6): 34-39.(LIU Xue-jun, LI Ming-rui, HUANG Wen-bin. Finite deformation elasto-plastic theory based on logarithmic strain and consistent algorithm[J]. Journal of China Agricultural University,2000,5(6): 34-39.(in Chinese)) [8] 刘学军, 李明瑞. 基于对数应变的有限变形弹塑性一致性算法[J]. 中国农业大学学报, 2001,6(2): 32-39.(LIU Xue-jun, LI Ming-rui. Finite deformation elasto plastic theory based on logarithmic strain and consistent algorithm[J]. Journal of China Agricultural University,2001,6(2): 32-39.(in Chinese)) [9] 韩昌瑞. 有限变形理论及其在岩土工程中的应用[D]. 博士学位论文. 武汉: 中国科学院, 武汉岩土力学研究所, 2009.(HAN Chang-rui. The theory of finite deformation and its application in geotechnical engineering[D]. PhD Thesis. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2009.(in Chinese)) [10] 扶名福, 徐秉业, 熊祝华. 模糊弹粘塑性问题及其解的唯一性和存在性[J]. 江西工业大学学报, 1992,14(1): 1-11.(FU Ming-fu, XU Bing-ye, XIONG Zhu-hua. Problem of fuzzy elasto-visto-plasticity and uniqueness and existence of the solution[J]. Journal of Jiangxi Polytechnic University,1992,14(1): 1-11.(in Chinese)) [11] 扶名福, 熊祝华, 徐秉业. 球壳的模糊弹粘塑性分析[J]. 工程力学, 1994,11(2): 1-7.(FU Ming-fu, XIONG Zhu-hua, XU Bing-ye. Analysis of fuzzy elasto-visto-plasticity for spherical shell[J]. Engineering Mechanics,1994,11(2): 1-7.(in Chinese)) [12] 殷有泉. 非线性有限元基础[M]. 北京: 北京大学出版社, 2007.(YIN You-quan. Nonlinear Finite Element Basis [M]. Beijing: Peking University Press, 2007.(in Chinese)) [13] Hohenemser K, Prager W. Dynamics of Structures[M]. Stuttgart: Verlagsgruppe Georg von Holtzbrinck GmbH, 1961. [14] Perzyna P. Fundamental problems in viscoplasticity[J]. Advances in Applied Mechanics,1966,9(2): 243-377. [15] 刘健, 廖红建, 李杭州. 饱和重塑黄土动力反应的数值模拟[J]. 西安交通大学学报, 2008,42(1): 101-105.(LIU Jian, LIAO Hong-jian, LI Hang-zhou. Numerical simulation on dynamic response of saturated remolded loess soil[J]. Journal of Xi’an Jiaotong University,2008,42(1): 101-105.(in Chinese)) [16] 王新栋, 邓子辰, 王艳, 冯国春. 基于时间有限元方法的旋转柔性叶片动力学响应分析[J]. 应用数学和力学, 2014,35(4): 353-363.(WANG Xin-dong, DENG Zi-chen, WANG Yan, FENG Guo-chun. Dynamic behavior analysis of rotational flexible blades based on time-fomain finite element method[J]. Applied Mathematics and Mechanics,2014,35(4): 353-363.(in Chinese)) [17] 刘春梅, 钟柳强, 舒适, 肖映雄. 平面弹性问题自适应有限元方法的收敛性分析[J]. 应用数学和力学, 2014,35(9): 969-978.(LIU Chun-mei, ZHONG Liu-qiang, SHU Shi, XIAO Ying-xiong. Convergence of an adaptive finite element method for 2D elasticity problems[J]. Applied Mathematics and Mechanics,2014,35(9): 969-978.(in Chinese)) [18] 庄茁. ABAQUS非线性有限元分析与实例[M]. 北京: 科学出版社, 2005.(ZHUANG Zhuo. Nonlinear Finite Element Analysis and Examples on ABAQUS [M]. Beijing: Science Press, 2005.(in Chinese))

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142