ZHANG Yu, DENG Zi-chen, ZHAO Peng. Study of THz Wave Propagation in Tilted Carbon Nanotube Arrays Based on Symplectic Formulation[J]. Applied Mathematics and Mechanics, 2016, 37(2): 127-137. doi: 10.3879/j.issn.1000-0887.2016.02.002
Citation: ZHANG Yu, DENG Zi-chen, ZHAO Peng. Study of THz Wave Propagation in Tilted Carbon Nanotube Arrays Based on Symplectic Formulation[J]. Applied Mathematics and Mechanics, 2016, 37(2): 127-137. doi: 10.3879/j.issn.1000-0887.2016.02.002

Study of THz Wave Propagation in Tilted Carbon Nanotube Arrays Based on Symplectic Formulation

doi: 10.3879/j.issn.1000-0887.2016.02.002
Funds:  The National Natural Science Foundation of China(11372252)
  • Received Date: 2015-09-08
  • Rev Recd Date: 2015-11-30
  • Publish Date: 2016-02-15
  • With the equivalent medium model, the problem of planar waveguides filled with periodic parallel finite-length carbon nanotube arrays was introduced into the Hamilton system. Firstly, based on the equivalent medium theory, the dielectric property of the tilted carbon nanotubes was derived. Then, in view of the ideal conductive boundary conditions, the symplectic formulation was used to solve the eigenvalue problem of electromagnetic wave propagation and the dispersion relation was obtained. The numerical results show that, the dominant mode of the electromagnetic waves can hardly propagate in the carbon nanotube arrays in a narrow frequency band, while in the rest frequency bands it propagates well with very low loss, which means the carbon nanotube arrays have excellent transmission characteristics compared with the traditional materials. Through the optimization design, the best tilt angle was given to greatly enhance the transmission characteristics in the whole frequency range. The present research of THz wave propagation in carbon nanotube arrays makes a theoretical reference for the design of waveguide devices in the THz frequency bands.
  • loading
  • [1]
    Lijima S. Helical microtubules of graphitic carbon[J].Nature,1991,354(6348): 56-58.
    Hanson G V. Fundamental transmitting properties of carbon nanotube antennas[J].IEEE Transactions on Antennas and Propagation,2005,53(11): 3426-3435.
    Fan S S, Chapline M G, Franklin N R, Tombler T W, Cassell A M, Dai H J. Self-oriented regular arrays of carbon nanotubes and their field emission properties[J].Science,1999,283(5401): 512-514.
    雷达, 孟根其其格, 张荷亮, 智颖飙. 一种平行栅碳纳米管阵列阴极的场发射特性研究[J]. 物理学报, 2013,62(24): 248502-1-248502-7.(LEI Da, MENGGEN Qi-qi-ge, ZHANG He-liang, ZHI Ying-biao. Field emission properties from a carbon nanotube array with parallel grid[J].Acta Physica Sinica,2013,62(24): 248502-1-248502-7.(in Chinese))
    LIN Yue-he, LU Fang, TU Yi, REN Zhi-feng. Glucose biosensors based on carbon nanotube nanoelectrode ensembles[J].Nano Letters,2004,4(2): 191-195.
    Fu K, Zannoni R, Chan C, Adams S H, Nicholson J, Polizzi E, Yngvesson K S. Terahertz detection in single wall carbon nanotubes[J].Applied Physical Letters,2008,92(3): 033105.
    Wang Y, Kempa K, Kimball B, Carlson J B, Benham G, Li W Z, Kempa T, Rybczynski J, Herczynski A, Ren Z F. Receiving and transmitting light-like radio waves: antenna effect in arrays of aligned carbon nanotubes[J].Applied Physical Letters,2004,85(13): 2607-2609.
    Dresselhaus M S. Applied physics: nanotube antennas[J].Nature,2004,432(7020): 959-960.
    Ren L, Pint C L, Booshehri L G, Rice W D, Wang X F, Hilton D J, Takeya K, Kawayama I, Tonouchi M, Hauge R H, Kono J. Carbon nanotube terahertz polarizer[J].Nano Letters,2009,9(7): 2610-2613.
    Smith D R, Schurig D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors[J].Physical Review Letters,2003,90(7): 077405.
    Poddubny A, Iorsh I, Belov P, Kivshar Y. Hyperbolic metamaterials[J].Nature Photonics,2013,7(12): 948-957.
    Nefedov I S. Electromagnetic waves propagating in a periodic array of parallel metallic carbon nanotubes[J].Physical Review B,2010,82(15): 155423.
    García-Vidal F J, Pitarke J M, Pendry J B. Effective medium theory of the optical properties of aligned carbon nanotubes[J].Physical Review Letters,1997,78(22): 4289-4292.
    Nefedov I S, Tretyakov S A. Ultra broadband electromagnetically indefinite medium formed by aligned carbon nanotubes[J].Physical Review B,2011,84(11): 113410.
    Hashemi S M, Nefedov I S. Wideband perfect absorption in arrays of tilted carbon nanotubes[J].Physical Review B,2012,86(19): 195411.
    钟万勰. 电磁波导的辛体系[J]. 大连理工大学学报, 2001,41(4): 379-387.(ZHONG Wan-xie. Symplectic system of electro-magnetic waveguide[J].Journal of Dalian University of Technology,2001,41(4): 379-387.(in Chinese))
    钟万勰. 变截面电磁波导的辛分析[J]. 力学季刊, 2001,22(3): 273-280.(ZHONG Wan-xie. Symplectic analysis for electro-magnetic wave guide with varied cross sections[J].Chinese Quarterly of Mechanics,2001,22(3): 273-280.(in Chinese))
    孙雁, 谢军. 基于Hamilton体系的辛半解析法在各向异性电磁波导中的应用[J]. 计算力学学报, 2005,22(6): 690-693.(SUN Yan, XIE Jun. Hamiltonian symplectic semi-analytical method and its application in anisotropic electromagnetic waveguide[J].Chinese Journal of Computational Mechanics,2005,22(6): 690-693.(in Chinese))
    孙雁, 钟万勰. 电磁波导的通过谱计算[J]. 计算力学学报, 2006,23(6): 663-667.(SUN Yan, ZHONG Wan-xie. Symplectic theory of electro-magnetic wave-guide[J].Chinese Journal of Computational Mechanics,2006,23(6): 663-667.(in Chinese))
    孙雁, 钟万勰. 电磁共振腔的节点有限元法[J]. 动力学与控制学报, 2011,9(1): 1-6.(SUN Yan, ZHONG Wan-xie. Node finite element method for electro-magnetic resonant cavity[J].Journal of Dynamics and Control,2011,9(1): 1-6.(in Chinese))
    陈杰夫, 郑长良, 钟万勰. 电磁波导的辛分析与对偶棱边元[J]. 物理学报, 2006,55(5): 2340-2346.(CHEN Jie-fu, ZHENG Chang-liang, ZHONG Wan-xie. Symplectic analysis and dual edge element for electromagnetic waveguide[J].Acta Physica Sinica,2006,55(5): 2340-2346.(in Chinese))
    杨红卫, 钟万勰, 侯碧辉. 力学、热力学及电磁波导中的正则变换和辛描述[J]. 物理学报, 2010,59(7): 4437-4441.(YANG Hong-wei, ZHONG Wan-xie, HOU Bi-hui. The canonical transformation and symplectic description in mechanics, thermodynamics and electromagnetic waveguide[J].Acta Physica Sinica,2010,59(7): 4437-4441.(in Chinese))
    Nefedov I S, Tretyakov S A. Effective medium model for two-dimensional periodic arrays of carbon nanotubes[J].Photonics and Nanostructures-Fundamentals and Applications,2011,9(4): 374-380.
    Jishi R A, Dresselhaus M S, Dresselhaus G. Electron-phonon coupling and the electrical conductivity of fullerene nanotubules[J].Physical Review B,1993,48(15): 11385-11389.
    Burke P J. Lüttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes[J].IEEE Transactions on Nanotechnology,2002,1(3): 129-144.
    Nefedov I S, Valagiannopoulos C A, Hashemi S M, Nefedov E I. Total absorption in asymmetric hyperbolic media[J].Scientific Reports,2013,3: 2662. doi: 10.1038/srep02662.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (959) PDF downloads(641) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint