CHEN Wen, HEI Xin-dong, LIANG Ying-jie. A Fractional Structural Derivative Model for Ultra-Slow Diffusion[J]. Applied Mathematics and Mechanics, 2016, 37(6): 599-608. doi: 10.3879/j.issn.1000-0887.2016.06.005
Citation: CHEN Wen, HEI Xin-dong, LIANG Ying-jie. A Fractional Structural Derivative Model for Ultra-Slow Diffusion[J]. Applied Mathematics and Mechanics, 2016, 37(6): 599-608. doi: 10.3879/j.issn.1000-0887.2016.06.005

A Fractional Structural Derivative Model for Ultra-Slow Diffusion

doi: 10.3879/j.issn.1000-0887.2016.06.005
Funds:  The National Natural Science Foundation of China(General Program)(11372097)
  • Received Date: 2016-01-25
  • Rev Recd Date: 2016-03-04
  • Publish Date: 2016-06-15
  • The ultra-slow diffusion is even more slow than the power-law sub-diffusion and is widely observed in a variety of natural and engineering fields. The ultra-slow diffusion cannot be well described with the traditional anomalous diffusion models. The Sinai’s law of diffusion depicts a special type of ultra-slow diffusion which is characterized by a logarithmic stochastic relationship. In this study, the Sinai diffusion was extended to a general ultra-slow diffusion. In addition, in the proposed model the initial parameters were introduced to remedy the perplexing issue that the Sinai diffusion was not feasible around the initial period of the ultra-slow diffusion. As a generalized fractional-order derivative, the concept of the fractional structural derivative was also presented to establish the partial differential equation governing the ultra-slow diffusion.
  • loading
  • [1]
    Metzler R, Jeon J H, Cherstvy A G, Barkai E. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking[J]. Physical Chemistry Chemical Physics, 2014,16(44): 24128-24164.
    [2]
    陈文, 孙洪广, 李西成, 叶霖娟, 胡帅, 张晓棣, 成亮. 力学与工程问题的分数阶导数建模[M]. 北京: 科学出版社, 2010.(CHEN Wen, SUN Hong-guang, LI Xi-cheng, YE Lin-juan, HU Shuai, ZHANG Xiao-di, CHENG Liang. Fractional Derivative Modeling in Mechanical and Engineering Problems [M]. Beijing: Science Press, 2010.(in Chinese))
    [3]
    庞国飞, 陈文, 张晓棣, 孙洪广. 复杂介质中扩散和耗散行为的分数阶导数唯象建模[J]. 应用数学和力学, 2015,36(11): 1117-1134.(PANG Guo-fei, CHEN Wen, ZHANG Xiao-di, SUN Hong-guang. Fractional differential phenomenological modeling for diffusion and dissipation behaviors of complex media[J]. Applied Mathematics and Mechanics,2015,36(11): 1117-1134.(in Chinese))
    [4]
    胡金亮, 朱纯傲, 耿永亮, 张博. 非晶合金熔体的原子扩散[J]. 中国材料进展, 2014, 33(5): 282-288.(HU Jin-liang, ZHU Chun-ao, GENG Yong-liang, ZHANG Bo. Atomic diffusion in amorphous alloy melts[J]. Materials China,2014,33(5): 282-288.(in Chinese))
    [5]
    Boettcher S, Sibani P. Ageing in dense colloids as diffusion in the logarithm of time[J]. Journal of Physics: Condensed Matter,2011,23(6): 540-545.
    [6]
    Courtland R E, Weeks E R. Direct visualization of ageing in colloidal glasses[J]. Journal of Physics Condensed Matter,2003,15(15): S359-S365.
    [7]
    Longmire M L, Watanabe M, Zhang H, Wooster T T, Murray R W. Voltammetric measurement of ultraslow diffusion rates in polymeric media with microdisk electrodes[J]. Analytical Chemistry,1990,62(7): 747-752.
    [8]
    Marquardt P, Nimtz G, Weiss W. Generalisation of the Sinai anomalous diffusion law[J]. Journal of Physics A: Mathematical & General,1987,20(18): 6637.
    [9]
    Metzler R, Klafter J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach[J]. Physics Reports,2000,339(1): 1-77.
    [10]
    Einstein A. Investigations on the Theory of the Brownian Movement [M]. New York: Courier Corporation, 1956.
    [11]
    Klafter J, Klafter J. First Steps in Random Walks [M]. New York: Oxford University Press, 2011.
    [12]
    Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel[J]. Progress in Fractional Differentiation and Applications,2015,1(2): 73-85.
    [13]
    陈文. 复杂科学与工程问题仿真的隐式微积分建模[J]. 计算机辅助工程, 2014,23(5): 1-6.(CHEN Wen. Implicit calculus modeling for simulation of complex scientific and engineering problems[J]. Computer Aided Engineering,2014,23(5): 1-6.(in Chinese))
    [14]
    PANG Guo-fei, CHEN Wen, FU Zhuo-jia. Space-fractional advection-dispersion equations by the Kansa method[J]. Journal of Computational Physics,2014,293: 280-296.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1313) PDF downloads(1047) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return